
$ cc -O2 -g -o hello hello.c && ./hello

1

$ cc -O2 -g -o hello hello.c && ./hello

$ cat -n hello.c

1 #include <stdio.h>

2

3 int main(void)

4 {

5 const char *s = "Hello, worlf!";

6 printf("%s\n", s);

7 return 0;

8 }

$

2

$ cc -O2 -g -o hello hello.c && ./hello

$ cat -n hello.c

1 #include <stdio.h>

2

3 int main(void)

4 {

5 const char *s = "Hello, worlf!";

6 printf("%s\n", s);

7 return 0;

8 }

$ gdb hello

(gdb) break 6

(gdb) run

Breakpoint 1, main () at hello.c:6

6 printf("%s\n", s);

(gdb) print s

<optimized out> <-- lies!

3

$ gdb hello

(gdb) break printf

(gdb) run

Hello, worlf!

[Inferior 1 (process 12795) exited normally]

4

Optimisers are good–bad. . .

5

$ cc -O2 -g -o hello hello.c && readelf -wi hello | column

: TAG_compile_unit <6d>: TAG_subprogram

<c> AT_producer : GNU C17 10.2.1 <6e> AT_name : main

<10> AT_language : ANSI C99 <72> AT_decl_file : 1

<11> AT_name : hello.c <73> AT_decl_line : 3

<1d> AT_low_pc : 0x0 <75> AT_type : <0x30>

<30>: TAG_base_type <79> AT_low_pc : 0x1050

<31> AT_byte_size : 4 <81> AT_high_pc : 0x17

<32> AT_encoding : signed <8f>: TAG_variable

<33> AT_name : signed int <90> AT_name : s

<38>: TAG_base_type <92> AT_decl_file : 1

<39> AT_byte_size : 1 <93> AT_decl_line : 5

<3a> AT_encoding : signed char <95> AT_type : <0x5b>

<3b> AT_name : signed char <99> AT_location : OP_addr: 2004; OP_stack_value

<48>: TAG_const_type <c6>: TAG_subprogram

<49> AT_type : <0x38> <c7> AT_linkage_name: puts

<5b>: TAG_pointer_type <cb> AT_name : __builtin_puts

<5c> AT_byte_size : 8 <cf> AT_decl_file : 2

<5d> AT_type : <0x68> <d0> AT_decl_line : 0

6

{pc=foo.c:43:2
, x=69105,

a=69105, ...}
{pc=foo.c:44:2

, x=69105,
a=69105, ...}

{pc=foo.c:42:2
, x=0,

a=69105, ...}

{pc=foo.c:46:3
, x=69105,

a=0, ...}

x=a;

if (x) ...

a = 0;

x = getchar();

7

{rip=0xf00f010
, rax=69105,

rbx=69105, ...}
{rip=0xf00f013
, rax=69105,

rbx=69105, ...}

{rip=0xf00f00d
, rax=0,

rbx=69105, ...}

{rip=0xf00f01c
, rax=69105,

rbx=0, ...}

mov %rax, %rbx

cmp %rax,%rax

jnz 0xfaafaa

int 0x80

{rip=0xf00f019
, rax=69105,

rbx=69105, ...}

xor %rbx, %rbx

8

Debugging information encodes a function
mapping machine program state
. . . up to source program state
. . . at run time
. . . ‘undoing’ complex transformations wrought by compilers

object-level or optimised execution

source-level or unoptimised execution

mapping points

object-level or optimised execution

deoptimise
(at a safe point)

deoptimised source-level execution

object-level or optimised execution

temporally imprecise source-level view

some mapping
always
available

some mapping
always
available

occasional
precise
mapping

point when
debugger attached

attachment
headway

9

How good is it possible to make the debugging experience, given a
program binary that has been optimised by the compiler?

10

Assaiante et al, ASPLOS 2023

11

1 int f(int *data, void *arg)
2 {
3 int i = 0, tmp, out1 = 0, out2 = 0;
4
5 i = tmp = get_start(arg);
6 for (; i < MAX; ++i)
7 {
8 out1 ^= data[i];
9 }
10
11 for (i = tmp; i < MAX; ++i)
12 {
13 out2 &= data[i];
14 }
15 g(out1, out2);
16 return tmp;
17}

data: in r1 at all points

arg: in r2 at all points

i: in r3 from 3

tmp: in r4 from 5

out1: in r5 from 3

out2: in r6 from 3

12

1 int f(int *data, void *arg)
2 {
3 int i = 0, tmp, out1 = 0, out2 = 0;
4
5 i = tmp = get_start(arg);
6 for (; i < MAX; ++i)
7 {
8 out1 ^= data[i];
9 }
10
11 for (i = tmp; i < MAX; ++i)
12 {
13 out2 &= data[i];
14 }
15 g(out1, out2);
16 return tmp;
17}

data: in r1 at all points

arg: in r2 at all points

i: value 0 from 3 to 5
 in r3 from 5

tmp: in r4 from 5

out1: in r5 from 3

out2: in r6 from 3

13

Don’t say: Do say:

“Compilers may eliminate unused
or redundant computation (code)
and state (variables).”

“Compilers must residualise into
the debug info anything they want
to leave out of the base program.”

14

1 int f(int *data, void *arg)
2 {
3 int i = 0, tmp, out1 = 0, out2 = 0;
4
5 i = tmp = get_start(arg); int *p = &data[tmp];
6 for (; i < MAXp < &data[MAX]; ++ip)
7 {
8 out1 ^= data[i]*p;
9 }
10
11 for (i = tmpp = &data[tmp]; i < MAX
12 p<&data[MAX]; ++ip) {
13 out2 &= data[i]*p;
14 }
15 g(out1, out2);
16 return tmp;
17}

data: in r1 at all lines

arg:in r2 at all lines

i: value 0 at lines 3--5
 value (r7-r1)/4
 from line 5

tmp:in r4 from line 5

out1:in r5 from line 3

out2:in r6 from line 3

15

Brender et al, Digital Systems Journal 10(1), 1998
16

(gdb) l

11 for (i = tmp; i < MAX; ++i)

12 {

13 out2 &= data[i];

14 }

15 g(out1, out2);

16 return tmp; <== we are here

17 }

(gdb) print out1

<optimized out> <-- not always a lie . . . loss of (in-scope) data

Source-Level Debugging of Compiler-Optimised Code: Ill-Posed, but Not Impossible Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

the indexing is replaced a pointer increment at each loop
iteration, avoiding the need for a fresh index calculation
each time. As before, in a debugger the developer could
still observe the concrete execution seen on the right, with
variable i appearing to progress through its source-level
valuations, even though i is no longer directly represented
in the object code. The compiler-generated temporary p is
assumed to reside in register r7, and i can be computed as a
function of this register and data (still in r1).

5 The Essential Problem: Loss of State
Our examples so far have been rather convenient in a few
ways. Firstly, the control structure has been unchanged.
There is an injective mapping from distinct points in the
source program to distinct points in the object program.
(We have identified source points only by line numbers, but
this could be refined into terms of columns ranges, perhaps
following the statements or sequence points of the source
language.) Secondly, not only are the control states injec-
tively mappable, but execution continues to visit these in
the same order: execution order in the object program is
the same (after mapping) as the order in the source program.
Thirdly, residual computations have been stateless pure func-
tions: all the inputs they needed have been available in the
current object program state.

Not all optimisations are so convenient: those in the cat-
egories of code merging, code motion and/or (what we will
call) state dropping clearly do not satisfy these properties.
These categories are inter-related: code merging can be seen
as dropping control state, and code motion as refactoring
the control state, i.e. dropping some to replace it with other.
Of course non-control state is commonly also dropped, such
as when local variables found to be ‘dead’ during register
allocation are discarded from the program’s run-time state
(as with our err example in §3).

Ostensibly dropped state might be recoverable. Consider an
optimisation that merges identical tails of two basic blocks:

if (cond) {
...
++x;

} else {
...
++x;

}

. . . to become:

if (cond) {
...

} else {
...

}
++x;

The mapping of control positions is non-injective, since
multiple points in the source program are realised by the
same point in the object program. However, this could be dis-
ambiguated as long as cond is still available or computable.
The framing by Zurawski [36] of debug info as recovery func-
tions captures exactly this intuition: a function over object
program state can recover the source-level view—although
only if there are sufficient redundancies in the object pro-
gram’s state space.

Since version 3 of Dwarf in 2005, eliminated local vari-
ables can be recovered in this way. Control state, such as the
relevant line number in this example, still cannot: it would
require the line number table to be indexable not only by the
program counter, but by other state that can tell us where
we came from, in our case cond. Dwarf’s current line ta-
ble happens not to be so indexable. (This recalls our earlier
description of Dwarf as ‘PC-keyed’: the program counter
occupies a special role.)

Unfortunately, cond might not always be available! This
scenario is not limited to non-injective control mapping
situations; it could also apply in a store elimination similar
to our earlier i = 0 example. Suppose:
21: t = f();
22: int i = t + 1;
23: for (i = x; ...)

. . . is optimised to:
21: t = f();
22: int i;
23: for (i = x; ...)

. . . and we would like to residualise i at line 22 as the
computation t+1. What if t itself is not available? The trans-
formation has potentially shortened the live range of t, since
it is no longer used on line 22, meaning the compiler will
attempt to drop its state. Here, again, our definition of ‘avail-
able’ does not match that of standard compiler texts. For us, a
value is available either if it is stored in the program state, or
if it is residually computable i.e. computable as some function
of (recursively) available values. Constructing the residual
computation for i, we are in effect elaborating the backward
slice [31] of t+1. We can stop adding to our backward slice
when we hit values still stored in object program state, which
are trivially available. but we are in trouble if we hit a value
that is truly unavailable. These unavailable values consist of
that subset of the nondeterministic input to the program that
is no longer retained, either directly or inferrably, in object
program state. Although the debugger can re-do computa-
tions, it cannot generally re-perform input actions of the
debugged program. This is why Turing-powerful metadata
is not by itself enough to counter arbitrary compile-time
transformations.

The compiler could conservatively assume the input is
lost and so omit any residualisation, curtailing debuggability.
Or, since it is in charge of generating code, it could refrain
from discarding the input-dependent state at all, curtailing
optimisation. This is the classic dilemma faced by even the
most diligent compiler pass author.

Is there a way between the horns of this dilemma? State-
dropping optimizations, of which code motion is one kind,
have been viewed as ‘unavoidably’ curtailing debuggability
owing to an apparent lack of any recovery function. In an
article that pithily summarises many aspects of the problem,
Brender et al. [6] wrote as follows.

Unfortunately, code-motion-related opti-
mizations generally lack recovery func-
tions and so must be foregone [sic].

But under what assumptions do these optimisations truly
lack a means of recovery? Since state-dropping seems to be

→

Source-Level Debugging of Compiler-Optimised Code: Ill-Posed, but Not Impossible Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

the indexing is replaced a pointer increment at each loop
iteration, avoiding the need for a fresh index calculation
each time. As before, in a debugger the developer could
still observe the concrete execution seen on the right, with
variable i appearing to progress through its source-level
valuations, even though i is no longer directly represented
in the object code. The compiler-generated temporary p is
assumed to reside in register r7, and i can be computed as a
function of this register and data (still in r1).

5 The Essential Problem: Loss of State
Our examples so far have been rather convenient in a few
ways. Firstly, the control structure has been unchanged.
There is an injective mapping from distinct points in the
source program to distinct points in the object program.
(We have identified source points only by line numbers, but
this could be refined into terms of columns ranges, perhaps
following the statements or sequence points of the source
language.) Secondly, not only are the control states injec-
tively mappable, but execution continues to visit these in
the same order: execution order in the object program is
the same (after mapping) as the order in the source program.
Thirdly, residual computations have been stateless pure func-
tions: all the inputs they needed have been available in the
current object program state.

Not all optimisations are so convenient: those in the cat-
egories of code merging, code motion and/or (what we will
call) state dropping clearly do not satisfy these properties.
These categories are inter-related: code merging can be seen
as dropping control state, and code motion as refactoring
the control state, i.e. dropping some to replace it with other.
Of course non-control state is commonly also dropped, such
as when local variables found to be ‘dead’ during register
allocation are discarded from the program’s run-time state
(as with our err example in §3).

Ostensibly dropped state might be recoverable. Consider an
optimisation that merges identical tails of two basic blocks:

if (cond) {
...
++x;

} else {
...
++x;

}

. . . to become:

if (cond) {
...

} else {
...

}
++x;

The mapping of control positions is non-injective, since
multiple points in the source program are realised by the
same point in the object program. However, this could be dis-
ambiguated as long as cond is still available or computable.
The framing by Zurawski [36] of debug info as recovery func-
tions captures exactly this intuition: a function over object
program state can recover the source-level view—although
only if there are sufficient redundancies in the object pro-
gram’s state space.

Since version 3 of Dwarf in 2005, eliminated local vari-
ables can be recovered in this way. Control state, such as the
relevant line number in this example, still cannot: it would
require the line number table to be indexable not only by the
program counter, but by other state that can tell us where
we came from, in our case cond. Dwarf’s current line ta-
ble happens not to be so indexable. (This recalls our earlier
description of Dwarf as ‘PC-keyed’: the program counter
occupies a special role.)

Unfortunately, cond might not always be available! This
scenario is not limited to non-injective control mapping
situations; it could also apply in a store elimination similar
to our earlier i = 0 example. Suppose:
21: t = f();
22: int i = t + 1;
23: for (i = x; ...)

. . . is optimised to:
21: t = f();
22: int i;
23: for (i = x; ...)

. . . and we would like to residualise i at line 22 as the
computation t+1. What if t itself is not available? The trans-
formation has potentially shortened the live range of t, since
it is no longer used on line 22, meaning the compiler will
attempt to drop its state. Here, again, our definition of ‘avail-
able’ does not match that of standard compiler texts. For us, a
value is available either if it is stored in the program state, or
if it is residually computable i.e. computable as some function
of (recursively) available values. Constructing the residual
computation for i, we are in effect elaborating the backward
slice [31] of t+1. We can stop adding to our backward slice
when we hit values still stored in object program state, which
are trivially available. but we are in trouble if we hit a value
that is truly unavailable. These unavailable values consist of
that subset of the nondeterministic input to the program that
is no longer retained, either directly or inferrably, in object
program state. Although the debugger can re-do computa-
tions, it cannot generally re-perform input actions of the
debugged program. This is why Turing-powerful metadata
is not by itself enough to counter arbitrary compile-time
transformations.

The compiler could conservatively assume the input is
lost and so omit any residualisation, curtailing debuggability.
Or, since it is in charge of generating code, it could refrain
from discarding the input-dependent state at all, curtailing
optimisation. This is the classic dilemma faced by even the
most diligent compiler pass author.

Is there a way between the horns of this dilemma? State-
dropping optimizations, of which code motion is one kind,
have been viewed as ‘unavoidably’ curtailing debuggability
owing to an apparent lack of any recovery function. In an
article that pithily summarises many aspects of the problem,
Brender et al. [6] wrote as follows.

Unfortunately, code-motion-related opti-
mizations generally lack recovery func-
tions and so must be foregone [sic].

But under what assumptions do these optimisations truly
lack a means of recovery? Since state-dropping seems to be

. . . loss of control state

17

Dwarf-style residual computation gives us. . .

. . . this: . . . but not this:

18

Time-travel debugging is great, but. . .

‘record input from program start’

. . . takes preparation! + always-on overhead

What if we could residualise state, not just code?

‘retain otherwise-dropped information while attached’

. . . can’t travel back arbitrarily far, but debugging stays sane.

Residual computation: not a (stateless) function but a (stateful) process!

19

Dwarf tacitly assumes state lives only in the object program.

Why not also in the debugger?

Recent additions already do this in two small, ad-hoc ways.

‘location views’ – one PC, many source locations
‘[call] entry value’ operation – magic up a past value

See also ‘eviction recovery’ (in Caroline Tice’s 1999 thesis)

20

Wanted: general design for this. Does it generalise?

input
action

output
action

Limit case: consume same input, compute arbitrarily differently. . .

21

We were asking was the wrong question!

How good is it possible to make the available debugging experiences?

A program subject to compiler optimisation is no longer ‘a program’.
It’s a family of program variants.

‘Debugger, show me execution at source level’ is an ill-posed request!
The user should choose how ‘optimised’ a view they want to see!

But there’s no limit to how complete and correct an ‘illusion’ we can
show, as long as we can residualise both computation and state.

22

Source-level debugging of optimised code→ residual computation.

It fails ‘unavoidably’ only because it’s not stateful (enough, yet).

Aside from thought-stuff, some more specific work we’re doing:

Measuring local variables’ coverage in debug info
CC ’24 paper, LLVM contribution ongoing. . .

Differential testing of local variable info, call tree recovery. . .
ongoing

Debug info meets garbage collection: stack maps. . .
my nutty side project

That’s it! Ask me questions! You can also read our Onward! 24 paper.
https://humprog.org/~stephen/#onward24

stephen@humprog.org jryans@gmail.com

23

https://humprog.org/~stephen/#onward24

