$ cc -02 -g -0 hello hello.c && ./hello



$ cc -02 -g -0 hello hello.c && ./hello
$ cat -n hello.c
1 #include <stdio.h>

2

3  int main(void)

4 {

5 const char *s = "Hello, worlf!";
6 printf("%s\n", s);

7 return 0;

8 3}

$



$ cc -02 -g -0 hello hello.c && ./hello
$ cat -n hello.c
1 #include <stdio.h>

int main(void)

{

-

const char *s = "Hello, worlf!";
printf("%s\n", s);

N O v W N

return 0;

8 1

$ gdb hello

(gdb) break 6

(gdb) run

Breakpoint 1, main () at hello.c:6

6 printf("%s\n", s);

(gdb) print s

<optimized out> <-- lies!



$ gdb hello

(gdb) break printf

(gdb) run

Hello, worlf!

[Inferior 1 (process 12795) exited normally]



Optimisers are good-bad. . .

= O Q repo:livm/llvm-project [Debuglnfo] drops OR missing OR loses OR coverage OR missing OR misses

Filter by

<> Code o
I O Issues 743

1% Pullrequests 63

L) Discussions 0

-0~ Commits 2k

@ Packages 0

0 wikis 0

State

© open

© Closed

Advanced

® owner

() State

743 results (90 ms) Sort by: Best match ~ [ save <o

llvm/llvm-project
© [DebugInfo@02] SLP Vectorizer drops DebuglInfo
bugzilla

&= wolfy1961 - Opened on 1Jun 2020 - #45507

livm/livm-project
© [DebuglInfo][SelectionDAG] Missing bool assignment of re
debuginfo livm:codegen

& OCHyams - QM « Openedon2jun - #63076

Iivm/llvm-project
© [DebugInfo@01] SelectionDAG misses Debugloc coverag
bugzilla livm:codegen wrong-debug

jmorse - Opened on 21 May 2020 - #45365



$ cc
<b>:
<c>
<10>
<11>
<ld>

<30>:

<31>
<32>
<33>

<38>:

<39>
<3a>
<3b>

<48>:

<49>

<5b>:

<5¢c>
<5d>

-02 -g -0 hello hello.c && readelf -wi hello | column

TAG_compile_uni
AT_producer
AT_language
AT_name
AT_low_pc
TAG_base_type
AT_byte_size :
AT_encoding
AT_name
TAG_base_type
AT_byte_size :
AT_encoding
AT_name
TAG_const_type
AT_type
TAG_pointer_ty,
AT_byte_size :
AT_type

t <6d>: TAG_subprogram
: GNU C17 10.2.1 <6e> AT_name : main
: ANSTI C99 <72> AT_decl_file : 1
: hello.c <73> AT_decl_line : 3
: 0x0 <75> AT_type : <0x30>
<79> AT_low_pc : 0x1050
4 <81> AT_high_pc : 0x17
: signed <8f>: TAG_variable
: signed int <90> AT_name HEE
<92> AT_decl_file : 1
1 <93> AT_decl_line : 5
: signed char <95> AT_type : <0x5b>
: signed char <99> AT_location : OP_addr: 2004; OP_stack_value
<c6>: TAG_subprogram
1 <0x38> <c7> AT_linkage_name: puts
pe <cb> AT_name : __builtin_puts
8 <cf> AT_decl_file : 2
1 <0x68> <d®> AT_decl_line : @



{pc=foo.c:46:3
, X=69105,



jnz Oxfaafaa

mov %rax, %rbx {rip=0xf00f019

{rip=0xf00f013 , rax=69105,
, rax=69105, rbx=69105, ...}
cmp %rax,%rax rbx=69105, ...}

{rip=0xf00f01c

xor %rbx, %rbx , rax=69105,



Debugging information encodes a function

B mapping machine program state

® ... up to source program state
m ... atruntime
® ... ‘undoing’ complex transformations wrought by compilers

source-level or unoptimised execution
o O O
A A A

mapping points

® 0 0 0 O-

object-level or optimised execution



How good is it possible to make the debugging experience, given a
program binary that has been optimised by the compiler?

10



In this work, we identify and study a related important problem:
the completeness of debug information. Unlike correctness issues
for which an unoptimized executable can serve as reference, we
find there is no analogous oracle to deem when the cause behind
an unreported part of program state is an unavoidable effect of
optimization or a compiler implementation defect. In this scenario,
we argue that empirically derived conjectures on the expected
availability of debug information can serve as an effective means
to expose classes of these defects.

Assaiante et al, ASPLOS 2023



data:
1 int f(int *data, void *arg)
2 {
3 int i = 0, tmp, outl = 0, out2 = 0; arg:
4
5 i = tmp = get_start(arg);
6 for (; i < MAX; ++1i)
7 { i
8 outl 7= datal[il;
9 1}
10
11 for (i = tmp; i < MAX; ++1i) tmp:
12
13 out2 &= datalil;
14 }
15 g(outl, out2); outl:
16 return tmp;
17}

out2:

in r1 at all points

in r2 at all points

in r3 from 3

in r4 from 5

in r5 from 3

in r6 from 3



data: inrl atall points

1 int f(int *data, void *arg)

2 {

3 int i—=-60, tmp, outl = 0, out2 = 0; arg: in r2 atall points
4

5 i = tmp = get_start(arg);

6 for (; i < MAX; ++i)

7 { i value O from 3 to 5
8 outl ”= datali]; in r3 from 5

9 1}

10

11 for (i = tmp; i < MAX; ++1i) tmp: inr4 from5

12 {

13 out2 &= datalil;

14 1}

15 g(outl, out2); outl: inr5 from3

16 return tmp;

17}

out2: inr6 from3



Don’t say:

“Compilers may eliminate unused
or redundant computation (code)
and state (variables).”

Do say:

“Compilers must residualise into
the debug info anything they want
to leave out of the base program.”



LCoNOOULTDS WN B

_~— -

nt f(int *data, void *arg)

int +—=-65—tmp, outl = 0, out2 = 0;
i—=—tmp = get_start(arg); int *p = &data[tmp];
for (; +—<MAXp < &data[MAX]; ++ip)

outl "= datafil*p;
}

for (i—=—tmpp = &data[tmp]; +<MAX
p<&data[MAX]; ++ip) {
out2 &= datalil*p;
}
g(outl, out2);
return tmp;

data: inrl atall lines

arg:in r2 at all lines

i: wvalue O at lines 3--5
value (r7-rl)/4

from line 5
tmp:in r4 from line 5

outl:in r5 from line 3

out2:in r6 from line 3



Zurawski” develops the notion of a recovery
Junction that matches each kind of optimization. As an
optimization is applied during compilation, the com-
pensating recovery function is also created and made
available for later use by a debugger. If such a recovery
function cannot be created, then the optimization is

, which is simply to
disable all optimization and debug a completely unop-
timized program.

Brender et al, Digital Systems Journal 10(1), 1998



(gdb) 1

11 for (i = tmp; i < MAX; ++i)

12 {

13 out2 &= data[i];

14 }

15 g(outl, out2);
16 return tmp;

17 }

(gdb) print outl
<optimized out>

if (cond) {

++X;

} else {

++X;

<== we are here

<-- not always a lie

if (cond) {

} else ¢

... loss of (in-scope) data

... loss of control state



... this:

DwarF-style residual computation gives us. . .

.. but not this:

POLICE "¥%c BOX



Time-travel debugging is great, but. . .
m ‘record input from program start’

. takes preparation! + always-on overhead

What if we could residualise state, not just code?
m ‘retain otherwise-dropped information while attached’

. can’t travel back arbitrarily far, but debugging stays sane.

Residual computation: not a (stateless) function but a (stateful) process!



DwaRF tacitly assumes state lives only in the object program.

Why not also in the debugger?

Recent additions already do this in two small, ad-hoc ways.

m ‘location views’ — one PC, many source locations

m ‘[call] entry value’ operation — magic up a past value

See also ‘eviction recovery’ (in Caroline Tice’s 1999 thesis)

20



Wanted: general design for this. Does it generalise?

el
200 0-0-
e

Ta

input output
action action

Limit case: consume same input, compute arbitrarily differently. . .

21



We were asking was the wrong question!

How good is it possible to make the available debugging experiences?
A program subject to compiler optimisation is no longer ‘a program’.
It’s a family of program variants.

‘Debugger, show me execution at source level’ is an ill-posed request!
The user should choose how ‘optimised’ a view they want to see!

But there’s no limit to how complete and correct an ‘illusion’ we can
show, as long as we can residualise both computation and state.

22



Source-level debugging of optimised code — residual computation.
It fails ‘unavoidably’ only because it’s not stateful (enough, yet).
Aside from thought-stuff, some more specific work we’re doing:

Measuring local variables’ coverage in debug info
m CC ’24 paper, LLVM contribution ongoing. . .

Differential testing of local variable info, call tree recovery. . .

m ongoing

Debug info meets garbage collection: stack maps. . .
® my nutty side project

That’s it! Ask me questions! You can also read our Onward! 24 paper.

https://humprog.org/~stephen/#onward24
stephen@humprog.org jryans@gmail.com

23


https://humprog.org/~stephen/#onward24

