
Pipe Syntax in SQL
It's Time

Jeff Shute
jshute@google.com

HYTRADBOI
Feb 28, 2025

https://www.hytradboi.com/2025

SQL has problems?

“My biggest complaint ... is that the team
never stopped to clean up SQL.

All the annoying features of the language have
endured to this day.

SQL will be the COBOL of 2020, a language we are
stuck with that everybody will complain about.”

— Michael Stonebraker
 (Turing award winner)
 Readings in Database Systems (2015)

Many syntax problems:

● Operator ordering (SELECT ... FROM ... WHERE ... GROUP BY …)
○ Rigid and arbitrary
○ Anything non-trivial requires subqueries

● "Inside-out" data flow, starting with tables or subqueries in the middle
● Verbose and repetitive:

○ List same columns in SELECT, GROUP BY, ORDER BY, and every subquery.
● Complex behavior (e.g., SELECT vs. GROUP BY)

The problem: SQL is way too hard to use!

● For beginners, SQL is too hard to learn.
● For experts, SQL is still awkward and annoying: hard to write and hard to read.

It's been 50 years.
It's time to fix SQL.

It's been 50 years.
It's time to fix SQL.

Not replace it

Declarative semantics

● Relational operators and composability

Ecosystem!

● Databases, query engines, and tools
● Familiar language, huge userbase
● Existing SQL code

We want to keep this!

● Migrations to new languages and tools are painful

What's great about SQL?

Works like Unix pipes:

● Collection of operators, chained together arbitrarily via "pipes"

In other modern query languages:

● Kusto (KQL), Splunk, PRQL, ...

In APIs:

● Python DataFrames, Flume / Beam, C# LINQ, ...

"Piped Dataflow" in other languages

Users generally find these easy to understand and use.

The solution: We can do piped data flow in SQL!

Apply pipe operators in any order, any number of times:

FROM Orders
|> SELECT o_orderpriority, o_orderdate AS date
|> SELECT *, EXTRACT(MONTH FROM date) AS month
|> WHERE month = 2
|> WHERE o_orderpriority = '1-URGENT'
|> ORDER BY date
|> LIMIT 20;

Query logic flows top to bottom.
But it's still declarative. Optimizers can reorder.

Why `|>`? Unfortunately, we already use `|` for bitwise OR.

Example with two-level aggregation (TPC-H query 13)

FROM customer
|> LEFT OUTER JOIN orders
 ON c_custkey = o_custkey
 AND o_comment NOT LIKE '%unusual%'
|> AGGREGATE COUNT(o_orderkey) AS c_count
 GROUP BY c_custkey
|> AGGREGATE COUNT(*) AS custdist
 GROUP BY c_count
|> ORDER BY custdist DESC;

SELECT c_count, COUNT(*) AS custdist
FROM
 (
 SELECT c_custkey, COUNT(o_orderkey) c_count
 FROM customer
 LEFT OUTER JOIN orders
 ON c_custkey = o_custkey
 AND o_comment NOT LIKE '%unusual%'
 GROUP BY c_custkey
) AS c_orders
GROUP BY c_count
ORDER BY custdist DESC;

Standard SQL Pipe syntax

Pipe operators
Start a query

FROM ... # Any standard FROM clause

Standard SQL clauses
|> WHERE <condition>
|> LIMIT <n> [OFFSET <n>]
|> ORDER BY <expr> [ASC|DESC], ...
|> [LEFT|...] JOIN <table> [ON / USING ...]

Choose columns
|> SELECT <expr> [[AS] alias], ...
|> EXTEND <expr> [[AS] alias], ...
|> SET <column> = <expr>, ...
|> RENAME <column> AS <name>, ...
|> DROP <column>, ...

Add an alias
|> AS <alias>

Aggregation
|> AGGREGATE <agg_expr> [[AS] alias], ...

|> AGGREGATE <agg_expr> [[AS] alias], ...
 GROUP BY <group_expr> [AS alias], ...

Call table-valued function
|> CALL tvf(args, ...)

Other operators
|> TABLESAMPLE <method> (args)
|> DISTINCT
|> PIVOT (...)
|> UNPIVOT (...)

(More details in BigQuery docs.)

https://cloud.google.com/bigquery/docs/reference/standard-sql/pipe-syntax#pipe_operator_list

Table-valued functions (TVFs) in pipe syntax

● TVF call in standard syntax:
SELECT *
FROM TVF((<input_query>), args...)

● Pipe form:
<input_query>
|> CALL TVF(args...)

● Now TVFs work like built-in pipe operators

An example with TVFs (using BigQuery's ML TVFs)

SELECT *
FROM
 ML.PREDICT(
 MODEL `proj.imdb_classifier`,
 (
 SELECT *
 FROM ML.PREDICT(
 MODEL `proj.nnlm_embedding`,
 (SELECT
 "Isabelle Huppert ..."

AS embedding_input,
 7 AS reviewer_rating))
)
);

SELECT "Isabelle Huppert ..." AS embedding_input,
 7 AS reviewer_rating
|> CALL ML.PREDICT(MODEL `proj.nnlm_embedding`)
|> CALL ML.PREDICT(MODEL `proj.imdb_classifier`);

Standard SQL Pipe syntax

https://cloud.google.com/blog/products/data-analytics/introducing-bigquery-text-embeddings

Pipe syntax can be mixed in anywhere a query works.

● Mix pipe and non-pipe queries.

○ In subqueries, VIEWs, WITH, etc

● Add pipes on the end of any query.

● Use all the same tools.

Interoperability

Example mixing pipes and standard SQL
SELECT SUM(c_acctbal) balance
FROM (
 FROM Customer
 |> WHERE c_mktsegment = "BUILDING"
)
GROUP BY c_nationkey
|> WHERE balance > 0
|> AGGREGATE COUNT(*), SUM(balance);

● GoogleSQL is a shared component

○ Used in BigQuery, Spanner, F1, Procella, SQL Pipelines, ...
○ Implements all parsing and language analysis
○ Query engines consume resolved algebra, generate optimized plan

● Enabling pipe syntax is easy!

○ Just enable a flag
○ Query engines get the new syntax for free!

Implementation in GoogleSQL (and OSS ZetaSQL)

Evaluation

Nice idea, how's it working out?

● For SQL experts:

○ Super easy to learn - 10 minutes, from a few examples
○ Same operators and syntax, just better structure

○ Then be immediately more productive writing and editing SQL

● For SQL beginners, and SQL haters:

○ Fixes many difficult or annoying parts, that confuse users or cause resistance

Who's it for? Everyone!

Usage at Google - First year

● Users see it, learn it quickly,
want to use it.

● It's sticky, and spreads virally

Active users per week (in F1)

What we're hearing from users

Holy cow. All my complaints about
SQL just got addressed.

Pipes is the most useful
feature added, perhaps ever.

transformed writing SQL from something I
dreaded to a pleasant experience.

I'm starting to like SQL again!

makes working on queries as a human
so much easier and understandable

SQL pipes are amazing
and make the code so
much more readable.

Pipes is one of the most exciting
things I have seen in a long time.

It has been a lifechanging
experience for me, making
SQL _so_ much easier to write

● We can fix SQL's problems, without replacing SQL.

○ Keep all the good things about SQL, including the ecosystem.
■ Same languages, same tools. Just with better syntax.

○ Easy, incremental adoption. No migrations.

● It's still SQL, but it's a better SQL.

Conclusion

● Read the paper: SQL Has Problems. We Can Fix Them: Pipe Syntax In SQL (VLDB 2024)

● See OSS Zetasql
○ Query parser, analyzer, runnable reference implementation, etc.

● For the community: Support SQL pipe syntax in more systems?

Give it a try!

● Try it in BigQuery (docs)
○ Open to all as of February!

● Try it in DataBricks / Spark (docs)
○ First version just released!

https://research.google/pubs/sql-has-problems-we-can-fix-them-pipe-syntax-in-sql/
http://github.com/google/zetasql
https://cloud.google.com/bigquery
https://cloud.google.com/bigquery/docs/pipe-syntax-guide
https://docs.databricks.com/en/sql/language-manual/sql-ref-syntax-qry-pipeline.html

