Maxime Chevalier-

Boisvert
maximecb - she/her

Compiler

Hokstad

Hyperdrive ¢

IronRuby
JRuby
LLRB S

Ludicrous ©

MacRuby

MagLev s

MRuby JIT 5
Natalie s

Ruby+OMR &
RTLMJIT®

Rubinius

RUJIT

Rhizome

RubyComp

RubyX 9

Ruby.NET

Rucy s

Sorbet ©

TenderjiT 5

Topaz

TruffleRuby ©

XRuby

yarvallvm &
YARV MJIT

YT S

Years active

2008-present

20192020

2007-2011
2006-present
2017

2008-2009

2008-2013

2008-2016

2019-present

20162017
2017

2008-2016

2015

2004

20142020

2008

2021

2019-present

2021

20122014

2013-present

2006-2008

2008-2010

2018-present

2020-present

2009-2014

Base VM

Custom Ruby

Custom C#
Custom Java
MRI

MRI

MRI

Custom
Gemstone

smalltalk

Custom C++

MRI
MRI

Custom C++

and Ruby

MRI

MRI, JRuby,

Rubinius

Custom C#

Custom
RPython and
Ruby

Custom Java

and Ruby

Custom Java

stage

T

ot

T

Ao1/

nr

T

ot

nr

T

General approach

Template compilation
ofan AST

Tracing of YARV
instructions then
template compilation to
Cranelift

Generation of CIL
Generation of JVM
bytecode

Generation of LLYM IR
Template compilation

through DotGNU LibJIT

Generation of LLVM IR

ASTincrementally
lowered to G+
Generation of J9 IR

Generation of C

Generation of LLVM IR

Tracing

Conventional

speculative compiler

with in-process

assembler

Conventional compiler
with in-process

assembler

Generation of CIL
Template compilation
to eBPF

Generation of MRI
LLVM IR C extension
Lazy Basic Block
Versioning with in-

process assembler

Metatracing of a stack

bytecode interpreter

Partial evaluation of

self-specialising AST

Template compilation
to Java bytecode
Generation of LLVM IR
Generation of C

Lazy Basic-Block
Versioning with in-

process assembler

Frontend

Custom recursive
descent and
operator

precedence parser

Tracing YARV

interpreter

Parser to AST, to

internal IR

Parser o AST, to
custom stack

Dytecode

Base bytecode or IR

to custom bytecode

Parser to AST

Parser to AST

Template compiler

of YARV bytecode

Parser to AST

Parser to AST

Parser to AST

Template compiler

of YARY bytecode

Interpreter

None

Instrumented

base interpreter

Internal IR

interpreter

Stack bytecode

Stack bytecode

None

None

Base interpreter

Stack bytecode

interpreter

Self-specialising

ASTinterpreter

None

Base interpreter

Base interpreter

Intermediate

representations

Enhanced AST

None

CFG of linear RTL

instructions

Enhanced AST

None

Graphical sea-of-nodes

Multiple IRs gradually
removing abstraction
and lowering from AST

tolinear

Sorbet's typechecking IR

None

Graphical sea-of-nodes

None

None

https://ruby-compilers.com/

Key authors

Hokstad

Matthews

Lam
Nutter, Enebo,
Sastry
Kokubun

Brannan

Sansonetti

McLain, Felgentreff

Hideki
Morgan

Gaudet, Stoodley

Makarov

Phoenix, Bussink,

Shirai

1de

Seaton

Alexandersson

Riiger

Kelly
Uchio
Tarjan, Petrashko,

Froyd

Patterson

Gaynor, Felgentreff

Seaton, Daloze,
Menard, Chalupa,
MacGregor

Zhi

Hideki
Kokubun

Chevalier-Boisvert

Hideki

20.0 - —— CRuby
— YT
= 17.5 — RIT
£ —— JRuby
2 15.0 —— TR Native
w
2125
3
< 10.0
(0]
£
= 7157
5
©
2.5

0 100 200 300 400 500 600 700
Total run-time (s)

Figure 12. Time per iteration over total run-time during
the first 750s for the hexapdf benchmark. YJIT has fast and
predictable warm-up.

https://dl.acm.org/doi/pdf/10.1145/3617651.3622982

Binary Trees, V8, Linux479p, Proc. exec. #6 (no steady state)

0.51800

0.51348

0.50896

0.50444

Time (secs)

0.49993

0.49541

0.49089 T
201 401 601 801 1001 1201 1401 1601 1801 2000
In-process iteration

https://tratt.net/laurie/blog/2022/more_evidence_for_problems_in_vm_warmup.html

[R S —

Generated Machine

Int t —> -
nterpreter coda \|
|
[4 !
! i i
i 2. Branches are not compiled. i
1. Method call threshold ~ Stubs are left as compiler i
initiates compilation. callbacks. |
I |]
| i

v

3. When a branch stub is executed,
the compiler is called.
Machine code for that branch is
then generated.

YJIT Compiler SERPB——

4

Figure 1. YJIT Compilation Pipeline.

https://dl.acm.org/doi/pdf/10.1145/3486606.3486781

=
w
o

- T |) o |
Q pe—
g mean
38 —— p50
2 1.25 4+ —— p90
g — p99
2 —— deployment
= 1.20 A
"
) K
>
g
g 1.15 A
i}
- il
> 1.101
>
|9
C
3
© 1.05 A
>
Ke]
= |
6 00
1 T
o o Q o o
S 00 S '»"’Q S
Vv Vv e) ™
¢ ¢ ¢ ¢ &

Timestamp (UTC)

Figure 1. YJIT speedup ratio relative to the interpreter on
SFR. YJIT maintains a positive speedup throughout the pe-
riod examined, even on the slowest p99 requests.

https://dl.acm.org/doi/pdf/10.1145/3617651.3622982

70 1 58.6

N w S w [*)]
o o o o o
! L ! 1 1

Memory size (MiB, lower is better)

[
o
1

Code region size Metadata size

Figure 5. The mean size of JIT code region and metadata on
SFR. YJIT’s memory overhead largely comes from metadata.

https://dl.acm.org/doi/pdf/10.1145/3617651.3622982

142989

160000 -

140000 -

120000 -

100000 -

80000 -

60000 -

Number of units compiled on SFR

40000 -

20000 A
9162

0 J
ISEQs Basic blocks Basic block versions

Figure 6. The mean number of compiled ISEQs, basic blocks,
and basic block versions on SFR. YJIT generates many basic
block versions, each of which requires metadata. On average,
YJIT generated 1.62 versions per block.

https://dl.acm.org/doi/pdf/10.1145/3617651.3622982

pub struct Context {
// Number of values currently on the temporary stack
stack_size: u8,

// Offset of the JIT SP relative to the interpreter SP
// This represents how far the JIT's SP is from the "real" SP
sp_offset: 1i8,

/// Which stack temps or locals are in a register
reg_mapping: RegMapping,

// Depth of this block in the sidechain (eg: inline-cache chain)
// 6 bits, max 63
chain_depth: u8,

// Whether this code is the target of a JIT-to-JIT Ruby return ([Self::is_return_landing])
is_return_landing: bool,

// Whether the compilation of this code has been deferred ([Self::is_deferred])
is_deferred: bool,

// Type we track for self
self_type: Type,

// Local variable types we keep track of
local_types: [Type; MAX_CTX_LOCALS],

// Temp mapping type/local_idx we track
temp_mapping: [TempMapping; MAX_CTX_TEMPS],

/// A pointer to a block ISEQ supplied by the caller. @ if not inlined.
inline_block: Option<IseqPtr>,

// Encode into a compressed context representation in a bit vector bits.push_bool(val: self.is_deferred); // Encode stack temps
fn encode_into(gself, bits: émut BitVector) -> usize { bits.push_bool(val: self.is_return_landing); for stack_idx: usize in 0..MAX_CTX_TEMPS {
let start_idx: usize = bits.num_bits(); let mapping: TempMapping = self.get_temp_mapping(temp_idx: stack_idx);
// The chain depth is most often 0 or 1

// Most of the time, the stack size is small and sp offset has the same value if self.chain_depth < 2 { match mapping {
if (self.stack_size as 164) == (self.sp_offset as i64) &6 self.stack_size < & { bits.push_ui(val: 0); MapToStack(temp_type: Type) => {
// One single bit to signify a compact stack_size/sp_offset encoding bits.push_ui(val: self.chain_depth); if temp_type != Type::Unknown {
debug_assert!(self.sp_offset >= 0); // Temp idx (3 bits), known type (4 bits)
bits.push_ui(val: 1); } else { bits.push_op(Ctx0p::SetTempType);
bits.push_u2(val: self.stack_size); bits.push_ui(val: 1); bits.push_u3(val: stack_idx as u8);
} else { bits.push_u5(val: self.chain_depth); bits.push_u4(val: temp_type as u8);
// Full stack size encoding } }
bits.push_ul(val: 0); }
// Encode the self type if known
// Number of values currently on the temporary stack if self.self_type != Type::Unknown { MapToLocal(local_idx: u8) => {
bits.push_u8(val: self.stack_size); bits.push_op(Ctx0p: :SetSelfType); bits.push_op(Ctx0p::MapTempLocal);
bits.push_u4(val: self.self_type as ug); bits.push_u3(val: stack_idx as u8);
/[sp_offset: i8, } bits.push_u3(val: local_idx as u8);
bits.push_us(val: self.sp_offset as uB); }
} // Encode the local types if known
for local_idx: usize in 0..MAX_CTX_LOCALS { MapToSelf => {

// Which stack temps or locals are in a register

for §temp: Option<RegOpnd> in self.reg mapping.0.iter() {

if let Some(temp: RegOpnd) = temp {
bits.push_ui(val: 1); // Some
match temp {

RegOpnd: :Stack(stack_idx: u8) => {
bits.push_ui(val: @); // Stack
bits.push_u3(val: stack_idx);

}

RegOpnd: :Local(local_idx: u8) => {
bits.push_ui(val: 1); // Local

5 bits.push_u3(val: local_idx);

}
} else {
bits.push_ui(val: @); // None

let t: Type = self.get_local_type(local_idx);
if t != Type::Unknown {
bits.push_op(Ctx0p: :SetLocalType);
bits.push_u3(val: local_idx as u8);
bits.push_u4(val: t as u8);

// Temp idx (3 bits)

bits.push_op(CtxOp: :MapTempSelf);

bits.push_u3(val: stack_idx as u8);
}

// Inline block pointer

if let Some(iseq: *const rb_iseq_t) = self.inline_block {

bits.push_op(Ctx0p::SetInlineBlock);

bits.push_uint(val: iseq as u64, num_bits: 64);

}

// T0DO: should we add an op for end-of-encoding,

// or store num ops at the beginning?
bits.push_op(Ctx0Op: :End0fCode);

start_idx
} fn encode_into

RubyVM:Y]IT.runtime_stats

ALL YJIT metrics are available in a Hash returned by RubyVM::YJIT.runtime_stats . By default, the Hash
looks like this:

$ RUBYOPT=--yjit irb
irb(main)[01:0]> RubyVM::YJIT.runtime_stats
=>
{:inline_code_size=>338600,
:outlined_code_size=>338428,
:freed_page _count=>0,
:freed_code_size=>0,
:live_page count=>42,
:code_gc_count=>0,
:code_region_size=>688128,

:object_shape_count=>635}

You can read a field like RubyVM::YJIT.runtime_stats[:code_region_size] and send the metric to
whatever monitoring service you use.

https://railsatscale.com/2023-06-05-monitoring-yjit-in-production/

429.2 MiB -
381.5 MiB —
333.8 MiB —
286.1 MiB
238.4 MiB —
190.7 MiB

148 1Me _M-—

95.4 MiB —

47.7 MiB —

0.0 MiB

T T T T T T
October 2022 April July October 2023 April

Y axis values are the maximum memory usage while running the benchmark - lower is better.

https://youtu.be/XOJRhh8w_41?7t=2434

fn gen_opt_plus(
Jjit: &mut JITState,
asm: &mut Assembler,
) -> Option<CodegenStatus> {
let two_fixnums: bool = match asm.ctx.two_fixnums_on_stack(jit) {
Some(two_fixnums: bool) => two_fixnums,
None => {
defer_compilation(jit, asm);
return Some(EndBlock);

Id

if two_fixnums {
if lassume_bop_not_redefined(jit, asm, klass: INTEGER_REDEFINED_OP_FLAG, BOP_PLUS) {
return None;

}

// Check that both operands are fixnums
guard_two_fixnums(jit, asm);

// Get the operands from the stack
let argl: Opnd = asm.stack_pop(1);
let argo: Opnd = asm.stack_pop(1);

// Add argd + argl and test for overflow
let arg0_untag: Opnd = asm.sub(left: argo, right: opnd::Imm(1));
let out_val: Opnd = asm.add(left: arg@_untag, right: argl);

asm.jg(Target::side_exit((Counter::opt_plus_overflow));

// Push the output on the stack
let dst: Opnd = asm.stack_push(val_type: Type::Fixnum);
asm.mov(dest: dst, src:out_val);

Some(KeepCompiling)
} else {
gen_opt_send_without_block(jit, asm)
}
} fn gen_opt_plus

// Tnvalidate one specific block version
pub fn invalidate block_version(blockref: &BlockRef) {
//ASSERT_vm_locking();

// TODO: want to assert that all other ractors are stopped here. Can't patch
// machine code that some other thread is running

let block: §Block = unsafe { (xblockref).as_ref() };

let id_being_invalidated: BlockId = block.get_blockid();

Tet mut cb: &mut CodeBlock = CodegenGlobals::get_inline_cb();

Tet ocb: &mut OutlinedCb = CodegenGlobals::get_outlined_cb();

verify_blockid(id_being_invalidated);

#lcfg(feature = "disasn”)]
{
/ 1f dump_iseq_disasm is specified, print to console that blocks for matching ISEQ names were invalidated
if let Some(substr) = get_option_ref!(dump_iseq_disasm).as_ref()
let iseq_range = §block.iseq_range;
let iseq_location = iseq_get_location(block.iseq.get(), iseq_range.start);
if iseq_location.contains(substr) {
printin!("Invalidating block from {}, ISEQ offsets [{}, {})", iseq_location, iseq_range.start, iseq_range.end);
}

¥

// Remove this block from the version array
remove_block_version(blockref);

// Get a pointer to the generated code for this block
Tet block_start: CodePtr = block.start_addr;

// Make the start of the block do an exit. This handles 00M situations

// and some cases where we can't efficiently patch incoming branches.

// Do this first, since in case there is a fallthrough branch into this

// block, the patching loop below can overwrite the start of the block.

// In those situations, there is hopefully no jumps to the start of the block

// after patching as the start of the block would be in the middle of something
// generated by branch_t::gen_fn

let block_entry_exit: CodePtr =
.entry_exit Option<CodePtr>
.expect(msg: "invalidation needs the entry_exit field");

block &Block

let block_end: CodePtr = block.get_end_addr();

if block_start == block_entry_exit {
/ Some blocks exit on entry. Patching a jump to the entry at the
// entry makes an infinite loop.

} else {

// Patch in a jump to block.entry_exit.

let cur_pos: CodePtr = cb.get write ptr();
let cur_dropped_bytes: bool = cb.has_dropped_bytes();
cb.set_write_ptr(code_ptr: block_start);

let mut asm: Assembler = Assembler::new_without_iseq();
asm. jup(target: block_entry_exit.as_ side _exit());
cb.set_dropped_bytes(false);

asm. compile(mut cb, och: Some(och)). expect(msg

"can rewrite existing code”

assert!(
cb.get_write_ptr() <= block_end,

Tinvalidation wrote past end of block (code_size: {:?}, new_size: {}, start_addr: {:?})",
block. code_size(),

cb.get_write_ptr().as_offset() - block_start.as_offset(),

block.start_addr.raw_ptr(ch),

set_write_ptr(code_ptr: cur_pos);
:h set. droeged bytes(cur_dropped_bytes);

+

// FoEN@aEh incoming branch

for branchref: &NonNull<Branch> in block.incoming.0. take().uer() {
let branch: &Branch = unsafe { branchref.as_ref() }

Lot target_idx: usize = if branch.get_target_address(target_idx: 0)
0

Some(block_start) {
} else {
1

b

// Assert that the incoming branch indeed points to the block being invalidated
// SAFETY: no mutation.

unsafe {
Tet incoming_target: Box<BranchTarget> =

= branch. targets[target_idx].ref_unchecked().as_ref().unwrap();
assert_eq!(Some(block_start), incoming_target.get_address());
if let Some(incoming_block: &NonNull<Block>) = incoming_target.get_block() {

assert_eq! (blockref, incoming_block);

// Create a stub for this branch target
let stub_addr: Option<CodePtrs =

gen_branch_stub(block.ctx, iseq: block.iseq.get(), ocb, branch_struct_address..branchref.as_p'

// In case we were unable to generate a stub (e.g. 0OM). Use the block's
// exit instead of a stub for the block. It's important that we

// still patch the branch in this situation so stubs are unique

// to branches. Think about what could go wrong if we run out of

// memory in the middle of this loop

let stub_addr: CodePtr = stub_addr.unwrap_or(default: block_entry_exit);

// Fill the branch target with a stub

branch. targets[target_idx] .set(val: Some(Box: :new(BranchT
address: Some(stub_addr),
iseq: block.iseq.clone(
iseq_idx: block.iseq_range.start,
ctx: block.ctx,

::Stub(Box: :new({

// Check if the invalidated block immediately follows
let target_next: bool = block.start_addr == branch.end_addr.get();

if target_next {
// The new block will no longer be adjacent.

// Note that we could be enlarging the branch and writing into the
// start of the block being invalidated.
branch.gen_fn.set_shape(new_shape: BranchShape

efault);
}

// Rewrite the branch with the new jump target address
let old_branch_size: usize = branch.code_size();
regenerate_branch(cb, branch);

if target_next 6 branch.end_addr > block.end_addr {
panici("yjit invalidate rewrote branch past end of invalidated block: {:?} (code_size: {})*, branch, block.code_size());
if Itarget_next &6 branch.code_size() > old_branch_size {
panic!

*invalidated branch grew in size (start_addr: {:?}, old_size: {}, new_size: {})",
branch. start_addr.raw_ptr(cb), old_branch_size, branch.code_size()

}

// Clear out the JIT func so that we can recompile later and so the

// interpreter will run the iseq.

/7

// Only clear the jit_func when we're invalidating the JIT entry block.
// We only support compiling iseqs from index @ right now. So entry
// points will always have an instruction index of @. We'll need to

// change this in the future when we support optional parameters because
// they enter the function with a non-zero PC
if block.iseq_range.start == 0 {

// TODO:

// We could reset the exec counter to zero in rb_iseq_reset_jit_func()
// so that we eventually compile a new entry point when useful
unsafe { rb_iseq_reset_jit_func(iseq: block.iseq.get()) };

// FIXME:

// Call continuation addresses on the stack can also be atomically replaced by jumps going to the stub

// SAFETY: This block was in a version_map earlier

// in this function before we removed it, so it's well connected
unsafe { remove_from_graph(*blockref) };

aelayealacatl y))t::asm::(odeﬁlock

b fn mark_all_executable(smut self)

och. unwrap().mark all_executable();

cb.mark

xecutable();

incr_counter!(invalidation_count);

}fn invalidate_block_version

// Invariants to track:

// assume_bop_not_redefined(jit, INTEGER_REDEFINED_OP_FLAG, BOP_PLUS)
// assume_method_lookup_stable(comptime_recv_klass, cme, jit);

// assume_single_ractor_mode()

// track_stable_constant_names_assumption()

/// Used to track all of the various block references that contain assumptions

/// about the state of the virtual machine.

1implementation

pub struct Invariants {

® /// Tracks block assumptions about callable method entry validity.
cme_validity: HashMap<#const rb_callable_method_entry_t, HashSet<BlockRef>>,

/// A map from a class and its associated basic operator to a set of blocks

/// that are assuming that that operator is not redefined. This is used for

/// quick access to all of the blocks that are making this assumption when

/// the operator is redefined.

basic_operator_blocks: HashMap<(RedefinitionFlag, ruby_basic_operators), HashSet<BlockRef>>,
/// A map from a block to a set of classes and their associated basic

/// operators that the block is assuming are not redefined. This is used for

/// quick access to all of the assumptions that a block is making when it

/// needs to be invalidated.

block_basic_operators: HashMap<BlockRef, HashSet<(RedefinitionFlag, ruby_basic_operators)>>,

/// Tracks the set of blocks that are assuming the interpreter is running
/// with only one ractor. This is important for things like accessing

/// constants which can have different semantics when multiple ractors are
/// running.

single_ractor: HashSet<BlockRef>,

/// A map from an ID to the set of blocks that are assuming a constant with
/// that ID as part of its name has not been redefined. For example, if

/// a constant "A::B° is redefined, then all blocks that are assuming that
/// A" and B’ have not be redefined must be invalidated.
constant_state_blocks: HashMap<ID, HashSet<BlockRef>>,

/// A map from a block to a set of IDs that it is assuming have not been
/// redefined.

block_constant_states: HashMap<BlockRef, HashSet<ID>>,

/// A map from a class to a set of blocks that assume objects of the class
/// will have no singleton class. When the set is empty, it means that

/// there has been a singleton class for the class after boot, so you cannot
/// assume no singleton class going forward.

/// For now, the key can be only Array, Hash, or String. Consider making

/// an inverted HashMap if we start using this for user-defined classes

/// to maintain the performance of block_assumptions_free().
no_singleton_classes: HashMap<VALUE, HashSet<BlockRef>>,

/// A map from an ISEQ to a set of blocks that assume base pointer is equal
/// to environment pointer. When the set is empty, it means that EP has been
/// escaped in the ISEQ.

no_ep_escape_iseqs: HashMap<IseqPtr, HashSet<BlockRef>>,

sum(tree) ¢

tag(tree)==null "% tag(tree)==object =

yesd vesy
t 0
PREIY shape(tree)==@ "————» shape(tree)==@ "°
yes yes
= sum(tree.left) §t3 = sum(tree.left) J
= sum(tree.right) ! i t4 = sum(tree.right) v
. no : .
tag(t1l)==int32 : i tag(t3)==int32
yes* ' yes*
tag(t2)==int32 " i tog(ta)==int3z "
yes* yes*
return tl+t2+tree.val return t3+t4+tree.val
code specialized for shape @ ! code specialized for shape @

Figure 6. Generated code for the sum function with intraprocedural BBV

sum(tree:object) sum(tree:null)

return 0
shape(tree)==@ e shape(tree)== >
vesy vesd
\itl = sum(tree.left) | 3 = sum(tree.left) j
;t2 = sum(tree.right) §t4 = sum(tree.right) —
| return tl+t2+tree.val | | return t3+t4+tree.val |
i code specialized for shape@ code specialized for shapc@

Figure 7. Generated code for the sum function with interprocedural BBV

https://arxiv.org/pdf/1511.02956

/// Conditionally select if zero
CSelz { truthy: opnd, falsy: Opnd, out: Opnd },

// Load effective address
Lea { opnd: Opnd, out: Opnd },

/// YIIT IR instruction
2 implementations
pub enum Insn {

/// Add two operands together, and return the result as a new operand.
Add { left: opnd, right: opnd, out: Opnd },

/// This is the same as the OP_ADD instruction, except that it performs the
/// binary AND operation.
And { left: Opnd, right: opnd, out: Opnd },

/// Bake a string directly into the instruction stream.
BakeString(String),

// Trigger a debugger breakpoint
#[allow(dead_code)]
Breakpoint,

/// Add a comment into the IR at the point that this instruction is added.
/// It won't have any impact on that actual compiled code.
Comment(String),

/// Compare two operands
Cmp { left: opnd, right: opnd },

/// Pop a register from the C stack
cpop { out: Opnd },

/// Pop all of the caller-save registers and the flags from the C stack
CPopAll,

/// Pop a register from the C stack and store it into another register
CPopInto(Opnd),

/// Push a register onto the C stack
CPush(opnd),

/// Push all of the caller-save registers and the flags to the C stack
CPushAll,

// € function call with N arguments (variadic)
ccall { opnds: Vec<Opnd>, fptr: *const u8, out: Opnd },

// € function return
CRet(0Opnd),

/// Conditionally select if equal
CSelE { truthy: opnd, falsy: Opnd, out: Opnd },

/// Conditionally select if greater
cselG { truthy: Opnd, falsy: Opnd, out: Opnd },

/// Conditionally select if greater or equal
CSelGE { truthy: Opnd, falsy: Opnd, out: Opnd },

/// Conditionally select if less
csellL { truthy: opnd, falsy: Opnd, out: Opnd },

/// Conditionally select if less or equal
CcSelLE { truthy: Opnd, falsy: Opnd, out: Opnd },

/// conditionally select if not equal
CSelNE { truthy: Opnd, falsy: Opnd, out: Opnd },

/// Conditionally select if not zero
cselNz { truthy: opnd, falsy: Opnd, out: Opnd },

/// Set up the frame stack as necessary per the architecture.
FrameSetup,

/// Tear down the frame stack as necessary per the architecture.
FrameTeardown,

// Atomically increment a counter

// Input: memory operand, increment value
// Produces no output

IncrCounter { mem: Opnd, value: Opnd },

/// 3Jump if below or equal (unsigned)
Jbe(Target),

/// 3ump if below (unsigned)
Jb(Target),

/// Jump if equal
Je(Target),

/// Jump if lower
Jl(Target),

/// Jump if greater
Jg(Target),

/// Jump if greater or equal
Jge(Target),

// Unconditional jump to a branch target
Jmp(Target),

// Unconditional jump which takes a reg/mem address operand
Jmpopnd(0Opnd),

/// Jump if not equal
Jne(Target),

/// Jump if not zero
Jnz(Target),

/// Jump if overflow
Jo(Target),

/// Jump if overflow in multiplication
JoMul(Target),

/// 3ump if zero
Jz(Target),

/// 3ump if operand is zero (only used during lowering at the moment)
Joz(Opnd, Target),

/// Jump if operand is non-zero (only used during lowering at the moment)
Jonz(Opnd, Target),

// Add a label into the IR at the point that this instruction is added.
Label(Target),

/// Get the code address of a jump target
LeaJumpTarget { target: Target, out: Opnd },

/// Take a specific register. Signal the register allocator to not use it.
LiveReg { opnd: Opnd, out: Opnd },

// A low-level instruction that loads a value into a register.
Load { opnd: Opnd, out: Opnd },

// A low-level instruction that loads a value into a specified register.
LoadInto { dest: Opnd, opnd: Opnd },

// A low-level instruction that loads a value into a register and
// sign-extends it to a 64-bit value.
LoadSExt { opnd: Opnd, out: Opnd },

/// shift a value left by a certain amount.
Lshift { opnd: Opnd, shift: Opnd, out: Opnd },

// A low-level mov instruction. It accepts two operands.
Mov { dest: Opnd, src: Opnd },

// Perform the NOT operation on an individual operand, and return the result
// as a new operand. This operand can then be used as the operand on another
// instruction.

Not { opnd: Opnd, out: Opnd },

// This is the same as the OP_ADD instruction, except that it performs the
// binary OR operation.
or { left: opnd, right: Oopnd, out: Opnd },

/// Pad nop instructions to accommodate Op::Jmp in case the block or the insr
/// is invalidated.
PadInvalPatch,

// Mark a position in the generated code
PosMarker(PosMarkerfn),

/// shift a value right by a certain amount (signed).
Rshift { opnd: Opnd, shift: Opnd, out: Opnd },

// Low-level instruction to store a value to memory.
Store { dest: Opnd, src: Opnd },

// This is the same as the add instruction, except for subtraction.
Sub { left: Opnd, right: Opnd, out: Opnd },

// Integer multiplication
Mul { left: Opnd, right: Opnd, out: Opnd },

// Bitwise AND test instruction
Test { left: Opnd, right: Opnd },

/// shift a value right by a certain amount (unsigned).
URshift { opnd: Opnd, shift: Opnd, out: Opnd },

// This is the same as the OP_ADD instruction, except that it performs the
// binary XOR operation.
Xor { left: Opnd, right: Opnd, out: Opnd }

Binding

Objects of class Binding encapsulate the execution context at some particular place
in the code and retain this context for future use. The variables, methods, value of
self, and possibly an iterator block that can be accessed in this context are all
retained. Binding objects can be created using Kernel#binding, and are made

available to the callback of Kernel#set_trace_func.

These binding objects can be passed as the second argument of the Kernel#eval
method, establishing an environment for the evaluation.

class Demo
def initialize(n)
@secret = n
end
def get_binding
binding
end

end

Demo.new(99)
kl.get_binding
Demo.new(-3)

k2.get_binding

eval("@secret", bil)

eval("@secret", b2)

eval("@secret")

Binding objects have no class-specific methods.

https://ruby-doc.org/core-2.5.4/Binding.html

RBIMPL_ATTR_NONNULL(())

VELS

* Creates a binding object of the point where the trace 1is at.
*

* @param[in] trace_arg A trace instance.

* gQretval RUBY_Qnil The point has no binding.

* gretval otherwise Its binding.

*

* @internal

*

x gshyouhei has no 1dea on which situation shall this function return
* ::RUBY_Qnil.

*/

VALUE rb_tracearg_binding(rb_trace_arg t *trace_arg);

/* check “target' matches “pattern'.
“flag & VM_CHECKMATCH_TYPE_MASK' describe how to check pattern.
VM_CHECKMATCH_TYPE_WHEN: ignore target and check pattern is truthy.

VM_CHECKMATCH_TYPE_CASE: check “patten === target'.
VM_CHECKMATCH_TYPE_RESCUE: check “pattern.kind_of?(Module) &§& pattern === target'.
if "flag & VM_CHECKMATCH_ARRAY' is not @, then “patten' is array of patterns.

*/

DEFINE_INSN

checkmatch

(rb_num_t flag)

(VALUE target, VALUE pattern)

(VALUE result)

// attr bool leaf = leafness_of_checkmatch(flag);
{

}

result = vm_check_match(ec, target, pattern, flag);

| fail to see the difference to trace compilation
(and the predecessor of trace compilation,
dynamic binary translation) [...] Constant
propagation and conditional elimination in a
trace compiler lead to the same type check
elimination that you present.

The one big problem | have with the paper is
that it does not motivate and put into context
lazy block versioning properly. The paper
needs to do a better job at explaining which
precise problems of current Javascript JIT
approaches that are used in production are
solved by lazy basic block versioning.

https://pointersgonewild.com/2014/07/17/my-paper-was-rejected-again/

ABSTRACT

The Smalltalk-80" programming language includes dynamic
storage allocation, full upward funargs, aad universally
polymorphic procedures; the Smalltalk-80 programming sysiem
features interactive oxccution with incremental compilation, and
implementation portability. These features of modern
programming systems arc among the most difficuit to implement
cfficiently, even individually. A new implementation of the
Smalltalk-80 system, hosted on a small microprocessor-based
computer, achicves high performance while retaining’ complete
(object code) compatibility with cxisting implementations. ‘This
paper discusses the most significant optimization techniques
developed over the course of the project, many of which are
applicable to other languages. ‘the key idea is Lo represent
certain runtime state (both code and data) in more than onc
form, and o convert between forms when nceded.

https://dl.acm.org/doi/pdf/10.1145/800017.800542

The papers we have submitted with truly new ideas and techniques, and years of work behind
them, get reviews asking you to do 2-4 years more work. For example, they ask you to create a
completely different system by another team with no knowledge of your ideas and run an Avs. B
test (because that commercial system you compared to had different goals in mind). Oh, and 8-10
participants doing 3-4 hour sessions/participant isn't enough for an evaluation. You need lots

11T - I VA DR R s B M [CR U RME ssentially setting you up for a level of rigor that is almost

possible to meet in the career of a graduate student.

This attitude is a joke and it offers researchers no incentive to do systems work. Why should they?
Why should we put 3-4 person years into every CHI publication? Instead we can do 8 weeks of
work on an idea piece or create a new interaction technique and test it tightly in 8-12 weeks and
get a full CHI paper. | know it is not about counting publications, but until hiring and tenure policies
change, this is essentially what happens in the real world. The HCI systems student with 3 papers
over their career won't even get an interview. Nor will any systems papers win best paper awards
(ves, it happens occasionally but | know for a fact that they are usually the ones written by big
teams doing 3-4 person-years of work).

https://dubfuture.blogspot.com/2009/11/i-give-up-on-chiuist.html

Go back to thinking about and building systems. Narrowness
is irrelevant; breadth is relevant: it’s the essence of system.

Work on how systems behave and work, not just how they
compare. Concentrate on interfaces and architecture, not just
engineering.

Be courageous. Try different things; experiment. Try to give
a cool demo.

Funding bodies: fund more courageously, particularly long-
term projects. Universities, in turn, should explore ways to let
students contribute to long-term projects.

Measure success by ideas, not just papers and money. Make
the industry want your work.

http://herpolhode.com/rob/utah2000.pdf

o

Programmin pting, and markup languages

62.3%
52.9%
51%

S Source: survey stackoverflow.co/2024
L=] survey Data licensed under Open Database License (ODbL)

https://survey.stackoverflow.co/2024/technology#most-popular-technologies-language

https://survey.stackoverflow.co/2022/#technology-most-loved-dreaded-and-wanted

