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This talk

1.  Why data in motion deserves its own first-class, serverless
storage primitives

2. What could the next generation of data-intensive applications
look like, if we used this primitive as a foundation



Part |
Serverless streams



Object storage

e Scale
e Performance and reliability
e Ul/UX



Object storage

e Material improvement to pre-existing domains
e Durability and scale at the heart of new architectures



Object storage

e Material improvement to pre-existing domains
e Durability anc

The Rise of Object Storage: Simplifying
Architecture

One of the most significant shifts in modern system design is the growi
storage solutions like Amazon S3. Traditionally, systems managed their
leading to complex challenges around data replication and consistency
emerging approaches to incorporating object storage:

Tiered Storage: The most incremental approach, where less frequently 4
moved to object storage while maintaining traditional storage for hot datg

Write-Ahead Log Architecture: A more sophisticated approach where o
(recent mutations) lives outside object storage, while the bulk of data req
like NEON are using this approach to create "bottomless" Postgres implg

Zero Disk Architecture: The most radical approach, championed by co
Warpstream, where systems abandon local disks entirely in favor of objg

The implications are profound: simpler operational processes, easier s

greater flexibility in balancing cost, latency, and durability. Perhaps most intriguingly, this

shift could fundamentally change how we think about data integration, potentially reducing
our reliance on message queues and traditional ETL processes.
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S3 as the universal infrastructure
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TL;DR

Object Storage Is All You Need

1. Traditionally, infrastructure services such as
own storage layer on top of local disk storagg

Justin Cormack, Docker

partially a holdover from the pre-cloud era.

2. Increasingly, S3 is being used as the core per|
infrastructure services (e.g. Snowflake, Neon
WarpStream), rather than simply as a backuy
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Object Storage Is All You Need - Justin Cormack, Docker




Why streams?

e Object storage is not directly well suited for frequent writes
e Streams are currently relegated to higher-touch specialist
systems
o Caps on numbers of ordered sequences
o Low per-stream throughput norms in serverless offerings
m Use at scale typically demands partitioning
o High complexity



S2, the Stream Store E

e True serverless API for data in motion, backed by object storage
e Stream as an ordered sequence of binary records
e Basin as a namespace for streams
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S2, the Stream Store E

e True serverless API for data in motion, backed by object storage
e Stream as an ordered sequence of binary records
e Basin as a namespace for streams

e G O
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S2: Stream API E

Append Read CheckTail



S2: Stream AP )

Append Read CheckTail

Add records to the end of a
stream

All writes are durable within an
AZ on acknowledgement

~125MiB/s write throughput
per individual stream

~25ms p50 / <50ms p100
writes for Express storage
class

Read records linearly from any
point in a stream

Real-time tailing

Records from last ~20 seconds
at 500MiB/s

Effectively unlimited
throughput for reads of older
records

° Retrieve the next sequence
number that will be assigned
on a given stream

° Single-digit ms operation



S2: Stream API

e Existing “core-streaming” use cases improved
e New patterns for data-intensive architectures
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The shared log abstraction



Shared logs / journals

e WAL on attached-storage typically at foundation of database
durability

e |f the WAL can be shared among nodes in a fault-tolerant and
consistent way, then we can treat storage concerns separate
from the state machine

e Architecture at the heart of systems like MemoryDB (AWS),
Aurora (AWS), Delos (Meta)



Shared logs / journals

Taming Consensus in the Wild (with the Shared Log Abstraction)

Mahesh Balakrishnan
Confluent, Inc.

Abstract

The shared log is an abstraction for building layered con-
sensus systems that are simple to develop, deploy, evolve,
and operate. Shared logs emerged from systems research
and have seen significant traction in industry over the past
decade. In this paper, we describe some design principles for
consensus-based systems, based on our experience building
and operating real-world shared log databases in the wild.
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Shared logs / journals

“As an analogy, think of the [state machine replication] platform
as a filesystem and the shared log as a block device.

[...] a shared log helps us write an SMR layer without reasoning
about the internals of the consensus protocol. The [state machine]
layer is then free to focus on the complexity of materialization

[...]"

-Mahesh Balakrishnan, “Taming Consensus in the Wild” (2024)



Shared logs / journals

Amazon MemoryDB: A Fast and Durable Memory-First Cloud

Database
Yacine Taleb Kevin McGehee Nan Yan
Amazon Web Services Amazon Web Services Amazon Web Services
Canada USA Canada
Shawn Wang Stefan C. Miiller Allen Samuels
Amazon Web Services Amazon Web Services Amazon Web Services
USA Canada USA

Abstract

Amazon MemoryDB for Redis is a database service designed for
11 9s of durability with in-memory performance. In this paper, we
describe the architecture of MemoryDB and how we leverage open-
source Redis, a popular data structure store, to build an enterprise-
grade cloud database. MemoryDB offloads durability concerns to
a separate low-latency, durable transaction log service, allowing
us to scale performance, availability, and durability independently
from the in-memory execution engine. We describe how, using this
architecture, we are able to remain fully compatible with Redis,
while providing single-digit millisecond write and microsecond-

and leads to application business logic being customized around
the limitations of the underlying storage system.

Open Source Software (OSS) Redis [12], hereafter referred to as
Redis, emerged as the most popular in-memory key-value store
according to db-engines.com[5]. Redis provides microsecond laten-
cies, with p99 under 400us [9]), while allowing applications to
manipulate remote data structures, perform complex operations,
and push compute to storage. Redis support for complex shared data
structures substantially simplifies distributed applications and is
chiefly responsible for its popularity. Redis employs asynchronous
replication for high availability and read scaling and an on-disk
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Shared logs / journals

e But where do you actually find a fault-tolerant, strongly
consistent, performant shared log implementation?



Building a KV-store with S2

e Multi-primary, horizontally scalable, distributed KV-store
e All writes regionally durable
e Linearizable reads from all replicas

https://github.com/s2-streamstore/s2-kv-demo



https://github.com/s2-streamstore/s2-kv-demo

Building a KV-store with S2

e All PUTs and DELETEs add a log entry to a stream (Append)
o Latency bound by S2 stream append end-to-end ack
duration
e Replicas all continuously tail the shared log directly, applying
events to local materialized state (Read)
e All GETs are serviced from materialized state
o Strong consistency by performing CheckTail to ensure local
state reflects latest entry in the log



Building a KV-store with S2

e Constraints
o PUT/DELETE ~25ms (median) / 50ms p100
o Total log append throughput <= 125MiB/s



Building a KV-store with S2

e Concurrency primitives
o Stipulate an expected next sequence number on append
(optimistic)
o Enforced writer exclusively via fencing tokens (pessimistic)



Building a KV-store with S2
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Bonus: Fencing

Above, I mentioned how fencing in the journal service API is something that makes the service much more pow-
erful, and a better building block for real-world distributed systems. To understand what I mean, let’s consider a

journal service (a simple ordered stream service) with the following API:

write(payload) -> seq

read() —> (payload, seq) or none

You call write, and when the payload has been durably replicated it returns a totally-ordered sequence number
for your write. That’s powerful enough, but in most systems would require an additional leader election to ensure

that the writes being sent make some logical sense.
We can extend the API to avoid this case:

write(payload, last_seq) —> seq

read() —> (payload, seq) or none

In this version, writers can ensure they are up-to-date with all reads before doing a write, and make sure they’re
not racing with another writer. That’s sufficient to ensure consistency, but isn’t particularly efficient (multiple
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