
Serverless primitives for the 
shared log architecture

Stephen Balogh
Stream Store (s2.dev)

stephen@s2.dev



This talk

1. Why data in motion deserves its own first-class, serverless 
storage primitives

2. What could the next generation of data-intensive applications 
look like, if we used this primitive as a foundation



Part I
Serverless streams



Object storage

● Scale
● Performance and reliability
● UI/UX



Object storage

● Material improvement to pre-existing domains
● Durability and scale at the heart of new architectures 



Object storage

● Material improvement to pre-existing domains
● Durability and scale at the heart of new architectures 



Why streams?

● Object storage is not directly well suited for frequent writes
● Streams are currently relegated to higher-touch specialist 

systems
○ Caps on numbers of ordered sequences
○ Low per-stream throughput norms in serverless offerings

■ Use at scale typically demands partitioning
○ High complexity



S2, the Stream Store

● True serverless API for data in motion, backed by object storage
● Stream as an ordered sequence of binary records
● Basin as a namespace for streams



S2, the Stream Store

● True serverless API for data in motion, backed by object storage
● Stream as an ordered sequence of binary records
● Basin as a namespace for streams



S2, the Stream Store

● True serverless API for data in motion, backed by object storage
● Stream as an ordered sequence of binary records
● Basin as a namespace for streams



S2: Stream API

Append Read CheckTail



● Add records to the end of a 
stream

● All writes are durable within an 
AZ on acknowledgement

● ~125MiB/s write throughput 
per individual stream

● ~25ms p50 / <50ms p100 
writes for Express storage 
class

● Read records linearly from any 
point in a stream

● Real-time tailing

● Records from last ~20 seconds 
at 500MiB/s

● Effectively unlimited 
throughput for reads of older 
records

● Retrieve the next sequence 
number that will be assigned 
on a given stream

● Single-digit ms operation

S2: Stream API

Append Read CheckTail



S2: Stream API

● Existing “core-streaming” use cases improved
● New patterns for data-intensive architectures



Part II
The shared log abstraction



Shared logs / journals

● WAL on attached-storage typically at foundation of database 
durability

● If the WAL can be shared among nodes in a fault-tolerant and 
consistent way, then we can treat storage concerns separate 
from the state machine

● Architecture at the heart of systems like MemoryDB (AWS), 
Aurora (AWS), Delos (Meta)



Shared logs / journals

● Architecture at the heart of systems like MemoryDB, Aurora, 
Delos

● “The database is the log”
● Separate the log from the state machine



Shared logs / journals

“As an analogy, think of the [state machine replication] platform 
as a filesystem and the shared log as a block device.

 [...] a shared log helps us write an SMR layer without reasoning 
about the internals of the consensus protocol. The [state machine] 
layer is then free to focus on the complexity of materialization 
[...]”

- Mahesh Balakrishnan, “Taming Consensus in the Wild” (2024)



Shared logs / journals

● Architecture at the heart of systems like MemoryDB, Aurora, 
Delos

● “The database is the log”
● Separate the log from the state machine



Shared logs / journals

● But where do you actually find a fault-tolerant, strongly 
consistent, performant shared log implementation?



Building a KV-store with S2

● Multi-primary, horizontally scalable, distributed KV-store
● All writes regionally durable
● Linearizable reads from all replicas

https://github.com/s2-streamstore/s2-kv-demo

https://github.com/s2-streamstore/s2-kv-demo


Building a KV-store with S2

● All PUTs and DELETEs add a log entry to a stream (Append)
○ Latency bound by S2 stream append end-to-end ack 

duration
● Replicas all continuously tail the shared log directly, applying 

events to local materialized state (Read)
● All GETs are serviced from materialized state

○ Strong consistency by performing CheckTail to ensure local 
state reflects latest entry in the log



Building a KV-store with S2

● Constraints
○ PUT / DELETE ~ 25ms (median) / 50ms p100
○ Total log append throughput <= 125MiB/s



Building a KV-store with S2

● Concurrency primitives
○ Stipulate an expected next sequence number on append 

(optimistic)
○ Enforced writer exclusively via fencing tokens (pessimistic)



Building a KV-store with S2

● Concurrency primitives
○ Stipulate a MatchSeqNum
○ Support for fencing tokens



Thanks!

s2.dev

stephen@s2.dev

mailto:stephen@s2.dev


References
● Balakrishnan, Mahesh. “Taming Consensus in the Wild (with the Shared Log Abstraction).” ACM SIGOPS Operating 

Systems Review 58, no. 1 (August 14, 2024): 1–6. https://doi.org/10.1145/3689051.3689053.

● Bhushan, Shikhar. “The Disaggregated Write-Ahead Log.” unofficial blog, November 8, 2023. 
https://blog.schmizz.net/disaggregated-wal.

● Brooker, Marc. “MemoryDB: Speed, Durability, and Composition.” Marc’s Blog (blog). Accessed May 6, 2024. 
https://brooker.co.za/blog/2024/04/25/memorydb.html.

● Object Storage Is All You Need - Justin Cormack, Docker, 2024. https://www.youtube.com/watch?v=ei0wwTy6_G4.

● Riccomini, Chris, and Steven Johnson. “Four Infrastructure Trends Reshaping Modern Systems.” Accessed February 25, 
2025. https://www.prefect.io/blog/four-infrastructure-trends-reshaping-modern-systems.

● Taleb, Yacine, Kevin McGehee, Nan Yan, Shawn Wang, Stefan C Müller, and Allen Samuels. “Amazon MemoryDB: A 
Fast and Durable Memory-First Cloud Database,” 2024.

● Treybig, Davis. “S3 as the Universal Infrastructure Backend.” Innovation Endeavors (blog), March 25, 2024. 
https://medium.com/innovationendeavors/s3-as-the-universal-infrastructure-backend-a104a8cc6991.

● Verbitski, Alexandre, Anurag Gupta, Debanjan Saha, Murali Brahmadesam, Kamal Gupta, Raman Mittal, Sailesh 
Krishnamurthy, Sandor Maurice, Tengiz Kharatishvili, and Xiaofeng Bao. “Amazon Aurora: Design Considerations for 
High Throughput Cloud-Native Relational Databases.” In Proceedings of the 2017 ACM International Conference on 
Management of Data, 1041–52. Chicago Illinois USA: ACM, 2017. https://doi.org/10.1145/3035918.3056101.

https://doi.org/10.1145/3689051.3689053
https://blog.schmizz.net/disaggregated-wal
https://blog.schmizz.net/disaggregated-wal
https://brooker.co.za/blog/2024/04/25/memorydb.html
https://brooker.co.za/blog/2024/04/25/memorydb.html
https://www.youtube.com/watch?v=ei0wwTy6_G4
https://www.prefect.io/blog/four-infrastructure-trends-reshaping-modern-systems
https://medium.com/innovationendeavors/s3-as-the-universal-infrastructure-backend-a104a8cc6991
https://medium.com/innovationendeavors/s3-as-the-universal-infrastructure-backend-a104a8cc6991
https://doi.org/10.1145/3035918.3056101

