Enough With All The Raft



Databases by Replication Algorithm

Quorum
12.5%

Reconfiguration
25.0%

Raft
62.5%




4 Ask HN: Should | use Raft, Multi-Paxos, or VSR?

255 points by everyone 1 year ago | hide | past | favorite | 1000 comments



Replication Algorithms

1) Quorums 2) Leaders 3) Reconfiguration
e Majority Quorums e Raft e Primary-Backup
e Paxos e Multi-Paxos e Chain Replication
e VSR
Failure Masking Failure Detection
® @ o

Quorums Leaders Reconfiguration



' RAFT IS BEST! ’ x

If availability is If storing data
very important IS expensive

I Quorums ' [ReconﬁgurationJ




"Raft is the Best!"

It's best at... what?



Raft is Best!™ @

o

It's best at... So 00303%03, o0
e Latency? o 2edle 3°30%

e Throughput? .:;.
e Storage space? el o

https://transactional.blog/blog/

2024-data-replication-design-spectrum



Replicas
Required for

f=2
Paxos 5
(Quorum)
PacificA 3
(Reconfig)
Follower 5
Reads
(Raft)

It's not though...

Storage
Efficiency

20%

33%

20%

Read Bandwidth
Efficiency

20%

100%

100%

Write Bandwidth
Efficiency

20%

16.7%

5%

Chance of
Unavailability on
Failure

0%

100%

20%

Read
Latency

1RTT

1-2RTT

1-2RTT

Write
Latency

2RTT

2RTT

2RTT



"Raft is better because Raft is Simple!"

It's simpler than Multi-Paxos



On Complexity

1) Quorums

Hard: Large state
space to test

Easy: Slow == Failed

2) Leaders

Hard: Large state
space to test & Leader
liveness

Easy: N/A

3) Reconfiguration

Hard: Replica liveness

Easy: No error handling



"Raft is better than Reconfiguration because
Reconfiguration has unavailability!"

No.






Primary-Backup




It's always unavailable for someone...




QOutside SLAs/
’\ Unresponsive

| |
| f
|/
\

I
I
I

_..——"'
|

[
[N A
[\

1
AR e L

i [ 1 [

Application Latency

Time

Credit: https://bravenewgeek.com/everything-you-know-
about-latency-is-wrong/



Taurus Database: How to be Fast, Available, and Frugal
in the Cloud

Alex Depoutovitch, Chong Chen, Jin Chen, Paul Larson, Shu Lin, Jack Ng, Wenlin
Cui, Qiang Liu, Wei Huang, Yong Xiao, Yongjun He

Huawei Research Canada

ABSTRACT

Using cloud Database as a Service (DBaaS) offerings instead
of on-premise deployments is increasingly common. Key
advantages include improved availability and scalability at
a lower cost than on-premise alternatives. In this paper, we
describe the design of Taurus, a new multi-tenant cloud
database system. Taurus separates the compute and stor-
age layers in a similar manner to Amazon Aurora and Mi-
crosoft Socrates and provides similar benefits, such as read
replica support, low network utilization, hardware sharing
and scalability. However, the Taurus architecture has sev-
eral unique advantages. Taurus offers novel replication and
recovery algorithms providing better availability than ex-
isting approaches using the same or fewer replicas. Also,
Taurus is highly optimized for performance, using no more
than one network hop on critical paths and exclusively using
append-only storage, delivering faster writes, reduced de-
vice wear, and constant-time snapshots. This paper describes
Taurus and provides a detailed description and analysis of
the storage node architecture, which has not been previously
available from the published literature.

in the Cloud. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data (SIGMOD'20), June 14-19, 2020,
Portland, OR. USA. ACM, New York, NY, USA, 16 pages. https:/doi.
org/10.1145/3318464.3386129

1 INTRODUCTION

As companies move their applications to the cloud, demand
for cloud-based relational database service (DBaaS) is grow-
ing rapidly. Amazon, Microsoft, Alibaba. and other cloud
providers all offer such services. Most DBaaS offerings were
initially based on traditional monolithic database software,
essentially just running databases on (virtual) machines in
the cloud. using either local storage or cloud storage. Al-
though simple to implement, this approach cannot provide
what customers want from a cloud database service [12].
From a customer’s point of view, an ideal database service
should be highly available, require no maintenance, and scale
up and down automatically with database size and workload.
It should also deliver high performance, be low cost, and
users should pay only for resources actually used (pay-as
you-go). These goals can’t be achieved by running the same

https://arxiv.org/abs/
2412.02792




Replication imethiod Probability of non-availability x = 0.15 x = 0.05 x = 0.01
Write Read Write Read Write Read Write Read
N=6,Nw=4,Ngp =3 20 * x° 15 # x* 71072 [8%1073 | 3%107% | 107 |2%107° [2%1077
N=3Ny=2,Ny=2 3 x x? 3 * x? 71072 [7%1072 | 8%107% | 8%1073 | 3+107* [ 3x107*
N=3,Ny=3,Ng=1 3xx x 5#107! | 3%1073 | 2x107' [ 107* |3%107%2| 10°°
Taurus 0 x3 0 3%1073 0 1074 0 107

Table 1: Comparing the probability of the storage being unavailable for Taurus and common quorum replication

variants

Unlike pure quorum writes, Taurus log writes don'’t need to

land on specific Log Store nodes, so formula 1 is not

applicable. The probability of the storage layer being
unavailable for writes due to independent node failures is
close to zero for a cluster of hundreds of nodes because if

a chosen node is unavailable, any other node can be

chosen instead. Individual node failures affect latency, as
failed writes have to be retried with a different set of Log
Store nodes, but they don'’t affect availability.




"Raft is better than Reconfiguration because
Reconfiguration needs a consensus service!"

Yes: Kubernetes Coordination API,
S3, Dynamo, Postgres, etc.



PacificA: Replication in Log-Based Distributed Storage Systems

Wei Lin, Mao Yang
Microsoft Research Asia
{weilin, maoyang}@microsoft.com

ABSTRACT

Large-scale distributed storage systems have gained popu-
larity for storing and processing ever increasing amount of
data. Replication mechanisms are often key to achieving
high availability and high throughput in such systems. Re-
search on fundamental problems such as consensus has laid
out a solid foundation for replication protocols. Yet, both
the architectural design and engineering issues of practical
replication mechanisms remain an art.

Lintao Zhang, Lidong Zhou
Microsoft Research Silicon Valley
{lintaoz, lidongz}@microsoft.com

ple instances that co-exist.

In this paper, we describe our experience in designing,
implementing, and evaluating the replication mechanism for
large-scale log-based storage system in a local-area-network
(LAN) cluster environment. Such log-based designs are com-
monly used in storage systems (e.g., [12, 13, 15, 24]) to
improve performance by transforming random writes to se-
quential writes and by allowing batching, as well as to sup-
pon lransaulonal semantics. Many recently proposed stor-

A e mamanfa a Tasal TN Tarn e e a2 TNO0T Dnvveevn~A MM

https://www.microsoft.com/en-us/research/wp-content/

uploads/2008/02/tr-2008-25.pdf




"Raft is better than Quorums because
Quorums livelock on contention!"

For consensus, mostly.



Stop serializing things which don’t need to be serialized

Shared vs Individual Log Architecture

Shared Log

"
"

Contention for shared slots

Individual Logs

1

2

[ ]

[«]

[

1

(=]

1

2

3

[=]

=]

Independent slot access




1.

CASPaxos: Replicated State Machines without
logs

Denis Rystsov
Microsoft
derystso@microsoft.com

- Abstract

CASPaxos is a wait-free, linearizable, multi-writer multi-reader register in unreliable, asyn-

chronous networks supporting arbitrary update operations including compare-and-set (CAS).
The register acts as a replicated state machine providing an interface for changing its value by

applying an arbitrary user-provided function (a command). Unlike Multi-Paxos and Raft which
replicate the log of commands, CASPaxos replicates state, thus avoiding associated complexity,
reducing write amplification, increasing concurrency of disk operations and hardware utilization.

The paper describes CASPaxos, proves its safety properties and evaluates the characteristics
of a CASPaxos-based prototype of key-value storage.

https://arxiv.org/abs/1802.07000



Stop serializing commutative operations

Replica 1 ° e @

Replica 2 ° ° 9

Replica 3 e Q e
Replica 4 e e 0

Replica 5 e Q °

. Increment +1 . Increment +2 . Increment +3



The Escrow Transactional Method

PATRICK E. O'NEIL
Computer Corporation of America

A method is presented for permitting record updates by long-lived transactions without forbidding
simultaneous access by other users to records modified. Earlier methods presented separately by
Gawlick and Reuter are comparable but concentrate on “hot-spot” situations, where even short
transactions cannot lock frequently accessed fields without causing bottlenecks. The Escrow Method
offered here is designed to support nonblocking record updates by transactions that are “long lived”
and thus require long periods to complete. Recoverability of intermediate results prior to commit
thus becomes a design goal, so that updates as of a given time can be guaranteed against memory or
media failure while still retaining the prerogative to abort. This guarantee basically completes phase
one of a two-phase commit, and several advantages result: (1) As with Gawlick’s and Reuter’s
methods, high-concurrency items in the database will not act as a bottleneck; (2) transaction commit
of different updates can be performed asynchronously, allowing natural distributed transactions;
indeed, distributed transactions in the presence of delayed messages or occasional line disconnection
become feasible in a way that we argue will tie up minimal resources for the purpose intended; and
(3) it becomes natural to allow for human interaction in the middle of a transaction without loss of
concurrent access or any special difficulty for the application programmer. The Escrow Method, like
Gawlick’s Fast Path and Reuter’s Method, requires the database system to be an “expert” about the
type of transactional updates performed, most commonly updates involving incremental changes to
aggregate quantities. However, the Escrow Method is extendable to other types of updates.

https://mwhittaker.github.io/papers/html/01986escrow.html

) & e00
L]

)&
o o o




CEP-15: Fast General Purpose Transactions

Elliott Smith, Benedict Zhang, Tony Eggleston, Blake

benedict@apple.com nudzhang @umich.edu beggleston@apple.com

Andreas, Scott

cscotta@apple.com

Abstract

Modern applications replicate and shard their state to achieve fault tolerance and scalable performance. This presents
a coordination problem that modern databases address using leader-based techniques that entail trade-offs: either a
scalability bottleneck or weaker isolation. Recent advances in leaderless protocols that claim to address this coordination
problem have not yet translated into production systems. This paper outlines distinct performance compromises entailed
by existing leaderless protocols in comparison to leader-based approaches. We propose techniques to address these
short-comings and describe a new distributed transaction protocol ACCORD, integrating these techniques. ACCORD is
the first protocol to achieve the same steady-state performance as leader-based protocols under important conditions
such as contention and failure, while delivering the benefits of leaderless approaches to scaling, transaction isolation
and geo-distributed client latency. We propose that this combination of features makes ACCORD uniquely suitable for
implementing general purpose transactions in Apache Cassandra.

https://cwiki.apache.org/confluence/display/CASSANDRA/
CEP-15%3A+General+Purpose+Transactions




1) Quorums

Best For:

e Low Tail Latency
Fatal Flaw:

e High Contention
Livelock

Failure Masking

2) Leaders
Best For:

e None

Fatal Flaw:

e None

Failure Detection

Quorums Leaders

9
Reconfiguration

3) Reconfiguration
Best For:

e Cost Efficiency
Fatal Flaw:

e External
Membership Service



Self-Manages Membership

Supports High Contention

[ Reconfiguration J




Use the replication algorithm
that best fits your use case



Replication Comparison Reading:

Disaggregated OLTP

()]
o \U
= 2
n —
S 2l
D
g 23
—_— (7)) [
$ | Ev 2
o ue n
T Cc
= Qo s
3= o ©
< m Y
—~
m L
o &
n )
7} o
n
s o
© m Q
e o Y
5 (@) (@)
< wn o

Reconfiguration
https://transactional.blog/notes-on/disaggregated-oltp

Taurus



