Feb 28, 2025

A Quick Ramp-Up On
Ramping Up Quickly

Iain Ireland Mozilla =

So you wake up one
morning, and you're
a JavaScript
engine...

A website hands you some code

JavaScript

function add(a, b) {
returna + b;

}

|=

A website hands you some code

JavaScript > Parser

function add(a, b) { How hard could it be?
returna + b;

1

https://github.com/mozilla-spidermonkey/jsparagus/blob/master/js-quirks.md

|=

https://github.com/mozilla-spidermonkey/jsparagus/blob/master/js-quirks.md

A website hands you some code

JavaScript ® Parser > Bytecode
function add(a, b) { How hard could it be? GetArg 0
returna + b; GetArg 1
} Add
Return

|=

In
te
rprete
r

|=

Interpreter

JSOp op =readOp();
switch (op) {

Interpreter

JSOp op = readOp();
switch (op) {

case JSOp::GetArg:

uintl6_t argno = readUint16();

push(getArg(argno));
break;

|=

Interpreter

JSOp op = readOp();
switch (op) {

case JSOp::GetArg:
uintl6_targno = readUint16();

push(getArg(argno));
break;

case JSOp::Add:
Value lhs = pop();
Value rhs = pop();
push(add(lhs, rhs));
break;

|=

Interpreter

JSOp op = readOp();
switch (op) {

case JSOp::GetArg:

uintl6_targno = readUint16();

push(getArg(argno));
break;

case JSOp::Add:
Value lhs = pop();
Value rhs = pop();
push(add(lhs, rhs)):
break;

case JSOp::Sub:

|=

Interpreter

while (true) {

JSOp op = readOp();
switch (op) {

case JSOp::GetArg:

uintl6_targno = readUint16();

push(getArg(argno));
break;

case JSOp::Add:
Value lhs = pop();
Value rhs = pop();
push(add(lhs, rhs)):
break;

case JSOp::Sub:

|=

Interpreter

while (true) {

JSOp op =readOp();
switch (op) {

case JSOp::GetArg:
uintl6_t argno = readUint16();
push(getArg(argno));
break;

case JSOp::Add:
Value lhs = pop();
Value rhs = pop();
push(add(lhs, rhs));
break;

case JSOp::Sub:

|=

The website
comes back...

while (true) {

JSOp op = readOp();
switch (op) {

case JSOp::GetArg:

uintl6_t argno = readUint16();

push(getArg(argno));
break;

case JSOp::Add:
Value lhs = pop();
Value rhs = pop();
push(add(lhs, rhs));
break;

case JSOp::Sub:

|=

The website
comes back...

while (true) {

JSOp op = readOp();
switch (op) {

case JSOp::GetArg:
uintleé targn—

"L afe] rhs = pop();

push(add(lhs, rhs));
break;

case JSOp::Sub:

|=

It’s time to Adva G
get serious SSA 'M

MEN TfA

: w\ Muchnick
AW\
CRY =
e]

i
-
e ~

= 1 L2

The website Adu 'MG
comes back... 35 P\

MEN TfA

i
-
e ~

= 1 L2

: w\ Muchnick
AW\
CRY =
e]

Z
D
»
w
)

—
-

Py
-

N
S~
—_
e
-
R
———
—
\.A/.

0 -VENLER

te

The webs
comes back...

— T ML TR s

-

iy

AOT vs JIT

AOT vs JIT

AOT compilation only costs
developer time.

|=

AOT vs JIT

AOT compilation only costs
developer time.

Time spent JIT compiling
competes with running code.

|=

AOT vs JIT

w N

AOT compilation only costs
developer time.

Time spent JIT compiling
competes with running code.

AOT-compiled code is available
immediately.

|=

AOT vs JIT

ol i

AOT compilation only costs
developer time.

Time spent JIT compiling
competes with running code.

AOT-compiled code is available
immediately.

JIT-compiled code is available
when the compile finishes.

|=

AOT vs JIT

B OENE

AOT compilation only costs
developer time.

Time spent JIT compiling
competes with running code.

AOT-compiled code is available
immediately.

JIT-compiled code is available
when the compile finishes.

AOT compilation can be
amortized across more uses.

|=

T

iering

Code varies wildly in importance.

|=

T

iering

Code varies wildly in importance.

Some code is very hot.

|=

T

iering

B NQ

Code varies wildly in importance.

Some code is very hot.

Some code runs exactly once, or
never runs at all.

|=

T

iering

ol i

Code varies wildly in importance.

Some code is very hot.
Some code runs exactly once, or
never runs at all.

No one-size-fits-all solution.
Multiple tiers are necessary.

|=

T

iering

B OENE

Code varies wildly in importance.

Some code is very hot.

Some code runs exactly once, or
never runs at all.

No one-size-fits-all solution.
Multiple tiers are necessary.

Lower tiers can collect profiling
data for higher tiers.

|=

Baseline Compiler

|=

Baseline Compiler

Bytecode

GetArg O
GetArg 1
Add
Return

|=

Baseline Compiler

Bytecode

GetArg 0
GetArg 1
Add
Return

|=

Baseline Compiler

Bytecode ® Handler: GetArg
GetArg 0 1. Load argument from
GetArg 1 caller’s stack frame.
Add 2. Push it on the stack.
Return

|=

Baseline Compiler

Bytecode ® Handler: GetArg
GetArg 0 1. Load argument from
GetArg 1 caller’s stack frame.
Add 2. Push it on the stack.
Return

_b

Machine Code

push 0x28(rbp)

|=

Baseline Compiler

Bytecode ® Handler

GetArg O
GetArg 1
Add
Return

_b

Machine Code

push 0x28(rbp)

|=

Baseline Compiler

Bytecode ® Handler: GetArg
GetArg O 1. Load argument from
GetArg 1 caller’s stack frame.
Add 2. Push it on the stack.
Return

_b

Machine Code

push 0x28(rbp)

|=

Baseline Compiler

Bytecode ® Handler: GetArg
GetArg O 1. Load argument from
GetArg 1 caller’s stack frame.
Add 2. Push it on the stack.
Return

_b

Machine Code

push 0x28(rbp)
push 0x30(rbp)

|=

Baseline Compiler

Bytecode ® Handler: Add
GetArg O ?2?2?
GetArg 1
Add
Return

_b

Machine Code

push 0x28(rbp)
push 0x30(rbp)

|=

What is an Add?

|=

What is an Add?

Math
1 Numbers, Biglnts

add(1, 2);
add(1.5, Math.PI);

add(1n, 20000000000000000000n);

|=

What is an Add?

Math
1 Numbers, Biglnts

add(1, 2);
add(1.5, Math.PI);

add(1n, 20000000000000000000n);

Concatenation
Strings

add(“hello “, “world”);

|=

What is an Add?

Math
1 Numbers, Biglnts

add(1, 2);
add(1.5, Math.PI);

add(1n, 20000000000000000000n);

Concatenation
Strings

add(“hello “, “world”);

Arbitrary Nonsense
3 Objects

add(“hello 7, { toString: () => “world” });

|=

The most
sincere
form of
flattery

Jmiime Caclhes

Efficient lmplementation of the Smalltalk-80 System

1. Peter Deutsch

PV VN VS WP " -

Published in ECOOP *91 proceedings, Springer Verlag Lecture Notes in Computer Science 512, July, 1991.

Optimizing
Dynamically-Typed Object-Oriented Languages
With Polymorphic Inline Caches

Urs Holzle

Abstract: Polymorphic inline caches (PICs) provide a new way to reduce the overhead of polymorphic
message sends by extending inline caches to include more than one cached lookup result per call site. For
a set of typical object-oriented SELF programs, PICs achieve a median speedup of 11%.

As an important side effect. PICs collect type information by recording all of the receiver types actually used
at a given call site. The compiler can exploit this type information to generate better code when recompiling
amethod. An experimental version of such a system achieves a median speedup of 27% for our set of SELF
programs, reducing the number of non-inlined message sends by a factor of two.

Impl of dy ically-typed object-oriented languages have been limited by the paucity of type
information available to the compiler. The abundance of the type information provided by PIC: sts a
new compilation approach for these | adaptive ¢ ilation. Such compilers may succeed in
generating very efficient code for the time-critical parts of a program without incurring distracting
compilation pauses.

1. Introduction

Historically, dynamically-typed object-oriented languages have run much slower than statically-typed
languages. This disparity in performance stemmed largely from the relatively slow speed and high
frequency of message passing and from the lack of type information which could be used to reduce these
costs. Recently. techniques such as type analysis. customization, and splitting have been shown to be very
effective in reducing this disparity: for example. these techniques applied to the SELF language bring its
performance to within a factor of two of optimized C for small C-like programs such as the Stanford
integer benchmarks [CU90, CU91, Cha91]. However, larger. object-oriented SELF programs benefit less
from these techniqus For example. the Richards operating em benchmark in SELF is four times

[to the Pascal P-system [Ammann
wal feature of the Smalltalk-80 v-
untime state such as procedure
rammer as data objects. This is
model of Interlisp [XSIS 83], but
isp uses a programmer-visible

1,

treats

pr
er data objects.

ic approaches programming with
issage-passing and dynamic typing.
w/ in Smalltalk-80 terminology), a
ct (the receiver), which selects the
means that a method address must
en lexical point in the code, only
known. ‘To perform a message
the recciver is extraced, and the
idex into a table of the message
maps sclectors to methods. The
icated by the inheritance property
defined as a subclass to another,
of the superclass. If the initial
p algorithm trics again using the
pperclass of the receiver's class,
le class hicrarchy until a mcthod
ik is found or the top of the
hed.

uses the organization of objects
g information hiding. Only the
ven class (and its subclasscs) can
instance of that class. All access
gh messages. Because of this, a
len make procedure calls to access
as Pascal could compile a direct
his makes the performance of the
in more critical.

ich describéd here was to build a
dtable performance on a relatively

Inline Caches

Dynamic Languages
Mostly static!

Past behaviour is highly correlated with
future behaviour.

Deciding what to do is hard
Doing it is easy

There’s a common pattern:
e Many things could happen
e Picking the right path is slow
e Validating a single path is fast

Cache a fast path
Next time will be better

You only need a few cheap guards, once
you know what inputs to expect.

|=

Baseline Compiler

Bytecode ® Handler: Add

GetArg O
GetArg 1
Add
Return

_b

Machine Code

push 0x28(rbp)
push 0x30(rbp)

|=

Baseline Compiler

Bytecode ® Handler: Add % Machine Code
GetArg 0 1. Load the array of IC push 0x28(rbp)
GetArg 1 entries. push 0x30(rbp)

Add movq -0x28(rbp), rdi
Return

|=

Baseline Compiler

Bytecode

GetArg O
GetArg 1
Add
Return

> Handler: Add

1. Loadthearray of IC
entries.
2. Load the entry for this

op.

_b

Machine Code

push 0x28(rbp)
push 0x30(rbp)
movq -0x28(rbp), rdi
movq 0x10(rdi), rdi

|=

Baseline Compiler

Bytecode

GetArg O
GetArg 1
Add
Return

> Handler: Add

1. Loadthearray of IC

entries.

2. Load the entry for this
op.

3. Callit!

_b

Machine Code

push 0x28(rbp)
push 0x30(rbp)
movq -0x28(rbp), rdi
movq 0x10(rdi), rdi
callq (rdi)

|=

Baseline Compiler

Bytecode

GetArg O
GetArg 1
Add
Return

_>

Handler

_b

Machine Code

push 0x28(rbp)
push 0x30(rbp)
movq -0x28(rbp), rdi
movq 0x10(rdi), rdi
callg (rdi)

|=

Baseline Compiler

Bytecode ® Handler: Return
GetArg O 1. Load thereturn value
GetArg 1 into the return register.
Add 2. Return!

Return

_b

Machine Code

push 0x28(rbp)
push 0x30(rbp)
movq -0x28(rbp), rdi
movq 0x10(rdi), rdi
callg (rdi)

pop rax

mov rbp, rsp

pop rbp

ret

|=

Keeping your promises

-

c

.
() (

() (
_

[Add

\—t_/

Fallback

)

|=

Keeping your promises

[Add

)
)

Fallback

A\
Ve

o

Call slow path
Create fast path

4
\

J

|=

Keeping your promises

S

a

Int32 Add

a

g
Ve

o

Is LHS Int32?
Is RHS Int32°?

N

A\
Ve

o

Fallback
J
\
Call slow path
Create fast path
J

|=

Keeping your promises

S

a

Int32 Add

a

g
Ve

o

Is LHS Int32?
Is RHS Int32°?
Return LHS + RHS

N

J

A\
Ve

o

\
Fallback
J
\
Call slow path
Create fast path
J

|=

CachelR: The Benefits of a Structured Representation
for Inline Caches

Jan de Mooij Matthew Gaudet lain Ireland
jdemooij@mozilla.com mgaudet@mozilla.com iireland@mozilla.com
Mozilla Mozilla Mozilla
Utrecht, the Netherlands Toronto, Canada Toronto, Canada

Nathan Henderson
nthender@ualberta.ca
University of Alberta
Edmonton, Canada

Abstract

Inline Caching is an important technique used to accelerate
operations in dynamically typed language implementations
by creating fast paths based on observed program behaviour.
Most software stacks that support inline caching use low-
level, often ad-hoc, Inline-Cache (ICs) data structures for code
generation. This work presents CachelR. a design for inline
caching built entirely around an intermediate representation
(IR) which: (i) simplifies the development of ICs by raising
the abstraction level; and (ii) enables reusing compiled native
code through IR matching techniques. Moreover, this work
describes WarpBuilder. a novel design for a Just-In-Time (JIT)
compiler front-end that directly generates type-specialized
code by lowering the CachelR contained in ICs: and Trial
Inlining, an extension to the inline-caching system that al-
lows for context-sensitive inlining of context-sensitive ICs.
The combination of CachelR and WarpBuilder have been
powerful performance tools for the SpiderMonkey team, and
have been key in providing improved performance with less
security risk.

CCS Concepts: « Software and its engineering — Run-

J. Nelson Amaral

jamaral@ualberta.ca

University of Alberta
Edmonton, Canada

ACM Reference Format:

Jan de Mooij, Matthew Gaudet, lain Ireland, Nathan Henderson,
and J. Nelson Amaral. 2023. CachelR: The Benefits of a Structured
Representation for Inline Caches. In Proceedings of the 20th ACM
SIGPLAN International Conference on Managed Programming Lan-
guages and Runtimes (MPLR '23), October 22, 2023, Cascais, Portugal.
ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3617651.
3622979

1 Introduction

Throughout the extensive history of dynamically typed lan-
guages (DTLs) and their pursuit of efficient software exe-
cution, two fundamental techniques have proven their re-
silience: JIT compilation and inline caching.

JIT compilation can make computation more efficient by
leveraging dynamic information to compile language meth-
ods. or traces, into native code at runtime. Inline caching
can reduce the cost of polymorphic operations (e.g. method
dispatch and operators) by creating a cache directly asso-
ciated with a particular call-site or operator instance. The
original design of inline caching relied on the observation
that operation sites mav be polvmorphic in principle. but

|=

Baseline
Compiler

Baseline
Compiler

Per-opcode handlers directly
gen

erating machine code

|=

Per-opcode handlers directly
generating machine code

Baseline
CO m p I le r 2 E;/:;erzic behaviour via inline

N3

Baseline
Compiler

2

B NQ

Per-opcode handlers directly
generating machine code

Dynamic behaviour via inline
caches

Minimal optimization/overhead

|=

Baseline
Compiler

ol i

Per-opcode handlers directly
generating machine code

Dynamic behaviour via inline
caches

Minimal optimization/overhead

Faster to run than interpreter.
Faster to compile than optimizing
compiler.

|=

The website comes
back...

00D

Per-opcode handlers directly
generating machine code

Dynamic behaviour via inline
caches

Minimal optimization/overhead

Faster to run than interpreter.
Faster to compile than optimizing
compiler.

|=

Baseline Interpreter!

Handler: Return

Handler: GetArg
Handler: Add

1. Loadthe array of IC

vvhile (true) {

movzbl 0x0(r14), ecx
leaq <JumpTable>, rbx
jmp (rbx,rcx,8)

case JSOp::Return:

>
Dispatch to next op

case JSOp::GetArg:

>
Dispatch to next op

case JSOp::Add:

entries.

2. Loadthe entry for this
op.

3. Callit!

>
Dispatch to next op

case

|=

Baseline
Interpreter

Baseline
Interpreter

Lightning-fast startup

|=

B
a
Intseerlin
preet
e
I

|=

B
a
Intseerlin
preet
e
I

|=

Baseline
Interpreter

ol i

Lightning-fast startup

Fast performance

Code sharing

Easy transition between tiers

|=

Is it any good?

JetStream 2.2 Score Speedometer 3 Score
Interpreter Interpreter
+ Baseline + Baseline
Interpreter Interpreter
+ Baseline .
Compiler & Basel!ne
Compiler

The Everything)
Bagel The EvenghlngI
agel

0 50 100 150 200 250

Up to 8% page load improvements

10

20

30

|=

Is it any good?

Thank you

